ﻻ يوجد ملخص باللغة العربية
It has been argued in the literature that the star HV~2112 in the Small Magellanic Cloud is the first known example of a T.ZO, a Red Supergiant with a degenerate neutron core. This claim is based on the star having a high luminosity ($log (L/L_odot)$~> 5), an extremely cool effective temperature, and a surface enriched in in lithium, calcium and various $irp$-process elements. In this paper we re-examine this evidence, and present new measurements of the stellar properties. By compiling archival photometry from blue to mid-IR for HV~2112 and integrating under its spectral energy distribution we find a bolometric luminosity in the range of $log (L/L_odot)$=4.70-4.91, lower than that found in previous work and comparable to bright asymptotic giant branch (AGB) stars. We compare a VLT+XSHOOTER spectrum of HV~2112 to other late type, luminous SMC stars, finding no evidence for enhancements in Rb, Ca or K, though there does seem to be an enrichment in Li. We therefore conclude that a much more likely explanation for HV~2112 is that it is an intermediate mass($sim$5M$_odot$) AGB star. However, from our sample of comparison stars we identify a new T.ZO candidate, HV~11417, which seems to be enriched in Rb but for which we cannot determine a Li abundance.
Thorne-Zytkow objects (TZOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TZOs are predicted to be almost identical in appearance to red supergiants (RSGs). The best features t
The recently reported Type II Gamma-ray Burst (GRB) 200826A challenges the collapsar models by questioning how they can generate a genuinely short duration of the event. This paper proposes that the burst can originate from the collapse of a Thorne-Z
The origin of the 6.67 hr period X-ray source, 1E161348-5055, in the young supernova remnant RCW 103 is puzzling. We propose that it may be the descendant of a Thorne-Zytkow Object (TZO). A TZO may at its formation have a rapidly spinning neutron sta
TMR-1 (IRAS~04361+2547) is a class~I proto-stellar source located in the nearby Taurus star-forming region. Its circumstellar environment is characterized by extended dust emission with complex structures and conspicuous filaments. A faint companion,
Stars with unusual properties can provide a wealth of information about rare stages of stellar evolution and exotic physics. However, determining the true nature of peculiar stars is often difficult. In this work, we conduct a systematic search for c