ﻻ يوجد ملخص باللغة العربية
We study the optical properties of the Ruddlesden-Popper series of iridates Sr$_{n+1}$Ir$_n$O$_{3n+1}$ ($n$=1, 2 and $infty$) by solving the Bethe-Salpeter equation (BSE), where the quasiparticle (QP) energies and screened interactions $W$ are obtained by the $GW$ approximation including spin-orbit coupling. The computed optical conductivity spectra show strong excitonic effects and reproduce very well the experimentally observed double-peak structure, in particular for the spin-orbital Mott insulators Sr$_2$IrO$_4$ and Sr$_3$Ir$_2$O$_7$. However, $GW$ does not account well for the correlated metallic state of SrIrO$_3$ owing to a much too small band renormalization, and this affects the overall quality of the optical conductivity. Our analysis describes well the progressive redshift of the main optical peaks as a function of dimensionality ($n$), which is correlated with the gradual decrease of the electronic correlation (quantified by the constrained random phase approximation) towards the metallic $n=infty$ limit. We have also assessed the quality of a computationally cheaper BSE approach that is based on a model dielectric function and conducted on top of DFT+$U$ one-electron energies. Unfortunately, this model BSE approach does not accurately reproduce the outcome of the full $GW$+BSE method and leads to larger deviations to the measured spectra.
The goal of this work is studying the evolution of thermoelectric transport across the members of the Ruddlesden-Popper series iridates Srn+1IrnO3n+1, where a metal-insulator transition driven by bandwidth change occurs, from the strongly insulating
We report on the tuning of magnetic interactions in superlattices composed of single and bilayer SrIrO$_3$ inter-spaced with SrTiO$_3$. Magnetic scattering shows predominately $c$-axis antiferromagnetic orientation of the magnetic moments for the bil
In this study, we systematically investigate 3D momentum($hbar k$)-resolved electronic structures of Ruddlesden-Popper-type iridium oxides Sr$_{n+1}$Ir$_n$O$_{3n+1}$ using soft-x-ray (SX) angle-resolved photoemission spectroscopy (ARPES). Our results
We study the correlated electronic structure of single-layer iridates based on structurally-undistorted Ba$_2$IrO$_4$. Starting from the first-principles band structure, the interplay between local Coulomb interactions and spin-orbit coupling is inve
We report the band structures and excitonic properties of delafossites $CuMO_2$ (M = Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art $textit{GW}$-BSE approach. We find that all the delafossites are indirect band gap semiconductors with l