ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films

79   0   0.0 ( 0 )
 نشر من قبل Maryam Golalikhani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the metal insulator transition in thin films and superlattices of LaNiO3 with only few unit cells in thickness remains elusive despite tremendous effort. Quantum confinement and epitaxial strain have been evoked as the mechanisms, although other factors such as growth-induced disorder, cation non-stoichiometry, oxygen vacancies, and substrate-film interface quality may also affect the observable properties in the ultrathin films. Here we report results obtained for near-ideal LaNiO3 films with different thicknesses and terminations grown by atomic layer-by-layer laser molecular beam epitaxy on LaAlO3 substrates. We find that the room-temperature metallic behavior persists until the film thickness is reduced to an unprecedentedly small 1.5 unit cells (NiO2 termination). Electronic structure measurements using x-ray absorption spectroscopy and first-principles calculation suggest that oxygen vacancies existing in the films also contribute to the metal insulator transition.

قيم البحث

اقرأ أيضاً

Transport in ultrathin films of LaNiO3 evolves from a metallic to a strongly localized character as the films thickness is reduced and the sheet resistance reaches a value close to h/e2, the quantum of resistance in two dimensions. In the intermediat e regime, quantum corrections to the Drude low- temperature conductivity are observed; they are accurately described by weak localization theory. Remarkably, the negative magnetoresistance in this regime is isotropic, which points to magnetic scattering associated with the proximity of the system to either a spin glass state or the charge ordered antiferromagnetic state observed in other rare earth nickelates.
The quasi-one-dimensional linear chain compound HfTe3 is experimentally and theoretically explored in the few- to single-chain limit. Confining the material within the hollow core of carbon nanotubes allows isolation of the chains and prevents the ra pid oxidation which plagues even bulk HfTe3. High-resolution transmission electron microscopy combined with density functional theory calculations reveals that, once the triple-chain limit is reached, the normally parallel chains spiral about each other, and simultaneously a short-wavelength trigonal anti-prismatic rocking distortion occurs that opens a significant energy gap. This results in a size-driven metal-insulator transition.
In the perovskite oxide SrCrO$_{3}$ the interplay between crystal structure, strain and orbital ordering enables a transition from a metallic to an insulating electronic structure under certain conditions. We identified a narrow window of oxygen part ial pressure in which highly strained SrCrO$_{3}$ thin films can be grown using radio-frequency (RF) off-axis magnetron sputtering on three different substrates, (LaAlO$_{3}$)$_{0.3}$-(Sr$_{2}$TaAlO$_{6}$)$_{0.7}$ (LSAT), SrTiO$_{3}$ (STO) and DyScO$_{3}$ (DSO). X-ray diffraction and atomic force microscopy confirmed the quality of the films and a metal-insulator transition driven by the substrate induced strain was demonstrated.
Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we report an effective tuning of the MIT in epitaxial SrVO3 (SVO) films by expanding the out-of-plane lattice constant without changing in-plane lattice parameters, through helium ion irradiation. Upon increase of the ion fluence, we observe a MIT with a crossover from metallic to insulating state in SVO films. A combination of transport and magnetoresistance measurements in SVO at low temperatures reveals that the observed MIT is mainly ascribed to electron-electron interactions rather than disorder-induced localization. Moreover, these results are well supported by the combination of density functional theory and dynamical mean field theory (DFT+DMFT) calculations, further confirming the decrease of the bandwidth and the enhanced electron-electron interactions resulting from the expansion of out-of-plane lattice constant. These findings provide new insights into the understanding of MIT in correlated oxides and perspectives for the design of unexpected functional devices based on strongly correlated electrons.
We present a detailed study of the emergence of bulk ferromagnetism in low carrier density samples of undoped indium tin oxide (ITO). We used annealing to increase the density of oxygen vacancies and change sample morphology without introducing impur ities through the metal insulator transition (MIT). We utilized a novel and highly sensitive Corbino-disk torque magnetometry technique to simultaneously measure the thermodynamic and transport effects of magnetism on the same sample after successive annealing. With increased sample granularity, carrier density increased, the sample became more metallic, and ferromagnetism appeared as resistance approached the MIT. Ferromagnetism was observed through the detection of magnetization hysteresis, anomalous Hall effect (AHE), and hysteretic magnetoresistance. A sign change of the AHE as the MIT is approached may elucidate the interplay between the impurity band and the conduction band in the weakly insulating side of the MIT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا