ﻻ يوجد ملخص باللغة العربية
In this paper, we present a new full-discrete finite element method for the heat equation, and show the numerical stability of the method by verified computations. Since, in the error analysis, we use the constructive error estimates proposed ny Nakao et. all in 2013, this work is considered as an extention of that paper. We emphasize that concerned scheme seems to be a quite normal Galerkin method and easy to implement for evolutionary equations comparing with previous one. In the constructive error estimates, we effectively use the numerical computations with guaranteed accuracy.
We consider the constructive a priori error estimates for a full discrete numerical solution of the heat equation with time-periodic condition.
We propose a weak Galerkin(WG) finite element method for solving the one-dimensional Burgers equation. Based on a new weak variational form, both semi-discrete and fully-discrete WG finite element schemes are established and analyzed. We prove the ex
This paper presents a steady-state and transient heat conduction analysis framework using the polygonal scaled boundary finite element method (PSBFEM) with polygon/quadtree meshes. The PSBFEM is implemented with commercial finite element code Abaqus
In this work we study a residual based a posteriori error estimation for the CutFEM method applied to an elliptic model problem. We consider the problem with non-polygonal boundary and the analysis takes into account the geometry and data approximati
We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approxim