ﻻ يوجد ملخص باللغة العربية
Imaging the bright maser emission produced by several molecular species at centimeter wavelengths is an essential tool for understanding the process of massive star formation because it provides a way to probe the kinematics of dense molecular gas at high angular resolution. Unimpeded by the high dust optical depths that affect shorter wavelength observations, the high brightness temperature of these emission lines offers a way to resolve accretion and outflow motions down to scales as fine as $sim$1-10 au in deeply embedded Galactic star-forming regions, and at sub-pc scales in nearby galaxies. The Next Generation Very Large Array will provide the capabilities needed to fully exploit these powerful tracers.
Various sign-posts of recent star-formation activity, such as water and methanol maser emission or magnetically active low-mass young stars, can be detected with Very Long Baseline Interferometry (VLBI) radio arrays. The extremely accurate astrometry
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of
Extraterrestrial amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth are present in meteoritic samples. More recently, glycine (NH$_2$CH$_2$COOH), the simplest amino acid, was detected by the Rosetta
Detailed mapping of the distributions and kinematics of gases in cometary comae at radio wavelengths can provide fundamental advances in our understanding of cometary activity and outgassing mechanisms. Furthermore, the measurement of molecular abund
Galactic winds are ubiquitously observed in galaxies both locally and in the high-redshift Universe. While these winds span many orders of magnitude in both temperature and density, observations of nearby galaxies show that the cold molecular phase t