ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation Timescales for High-Mass X-ray Binaries in M33

249   0   0.0 ( 0 )
 نشر من قبل Kristen Garofali
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival {it HST} and {it Chandra} imaging to find blue stars associated with X-ray positions. We use the {it HST} photometric data to model the color-magnitude diagrams in the vicinity of each candidate HMXB to measure a resolved recent star formation history (SFH), and thus a formation timescale, or age for the source. Taken together, the SFHs for all candidate HMXBs in M33 yield an age distribution that suggests preferred formation timescales for HMXBs in M33 of $<$ 5 Myr and $sim$ 40 Myr after the initial star formation episode. The population at 40 Myr is seen in other Local Group galaxies, and can be attributed to a peak in formation efficiency of HMXBs with neutron stars as compact objects and B star secondary companions. This timescale is preferred as neutron stars should form in abundance from $sim$ 8 M$_{odot}$ core-collapse progenitors on these timescales, and B stars are shown observationally to be most actively losing mass around this time. The young population at $<$ 5 Myr has not be observed in other Local Group HMXB population studies, but may be attributed to a population of very massive progenitors forming black holes very early on. We discuss these results in the context of massive binary evolution, and the implications for compact object binaries and gravitational wave sources.

قيم البحث

اقرأ أيضاً

204 - Sylvain Chaty 2011
The aim of this review is to describe the nature, formation and evolution of the three kinds of high mass X-ray binary (HMXB) population: i. systems hosting Be stars (BeHMXBs), ii. systems accreting the stellar wind of supergiant stars (sgHMXBs), and iii. supergiant stars overflowing their Roche lobe. There are now many new observations, from the high-energy side (mainly from the INTEGRAL satellite), complemented by multi-wavelength observations (mainly in the optical, near and mid-infrared from ESO facilities), showing that a new population of supergiant HMXBs has been recently revealed. New observations also suggest the existence of evolutionary links between Be and stellar wind accreting supergiant X-ray binaries. I describe here the observational facts about the different categories of HMXBs, discuss the different models of accretion in these sources (e.g. transitory accretion disc versus clumpy winds), show the evidences of a link between different kinds of HMXBs, and finally compare observations with population synthesis models.
High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the tra nsient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some detail whereas the optical and infrared properties are briefly discussed.
Recent theoretical works claim that high-mass X-ray binaries (HMXBs) could have been important sources of energy feedback into the interstellar and intergalactic media, playing a major role in the reionization epoch. A metallicity dependence of the p roduction rate or luminosity of the sources is a key ingredient generally assumed but not yet probed. Aims: Our goal is to explore the relation between the X-ray luminosity (Lx) and star formation rate of galaxies as a possible tracer of a metallicity dependence of the production rates and/or X-ray luminosities of HMXBs. Methods: We developed a model to estimate the Lx of star forming galaxies based on stellar evolution models which include metallicity dependences. We applied our X-ray binary models to galaxies selected from hydrodynamical cosmological simulations which include chemical evolution of the stellar populations in a self-consistent way. Results: Our models successfully reproduce the dispersion in the observed relations as an outcome of the combined effects of the mixture of stellar populations with heterogeneous chemical abundances and the metallicity dependence of the X-ray sources. We find that the evolution of the Lx as a function of SFR of galaxies could store information on possible metallicity dependences of the HMXB sources. A non-metallicity dependent model predicts a non-evolving relation while any metallicity dependence should affect the slope and the dispersion as a function of redshift. Our results suggest the characteristics of the Lx evolution can be linked to the nature of the metallicity dependence of the production rate or the Lx of the stellar sources. By confronting our models with current available observations of strong star-forming galaxies, we find that only chemistry-dependent models reproduce the observed trend for z < 4.
Since it started observing the sky, the INTEGRAL satellite has discovered new categories of high mass X-ray binaries (HMXB) in our Galaxy. These observations raise important questions on the formation and evolution of these rare and short-lived objec ts. We present here new infrared observations from which to reveal or constrain the nature of 15 INTEGRAL sources, which allow us to update and discuss the Galactic HMXB population statistics. After previous photometric and spectroscopic observing campaigns in the optical and near-infrared, new photometry and spectroscopy was performed in the near-infrared with the SofI instrument on the ESO/NTT telescope in 2008 and 2010 on a sample of INTEGRAL sources. These observations, and specifically the detection of certain features in the spectra, allow the identification of these high-energy objects by comparison with published nIR spectral atlases of O and B stars. We present photometric data of nine sources (IGR J10101-5654, IGR J11187-5438, IGR J11435-6109, IGR J14331-6112, IGR J16328-4726, IGR J17200-3116, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129) and spectroscopic observations of 13 sources (IGR J10101-5654, IGR J11435-6109, IGR J13020-6359, IGR J14331-6112, IGR J14488-5942, IGR J16195-4945, IGR J16318-4848, IGR J16320-4751, IGR J16328-4726, IGR J16418-4532, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129). Our spectroscopic measurements indicate that: five of these objects are Oe/Be high-mass X-ray binaries (BeHMXB), six are supergiant high-mass X-ray binaries (sgHMXB), and two are sgB[e]. From a statistical point of view, we estimate the proportion of confirmed sgHMXB to be 42% and that of the confirmed BeHMXB to be 49%. The remaining 9% are peculiar HMXB.
Strongly magnetized, accreting neutron stars show periodic and aperiodic variability over a wide range of time scales. By obtaining spectral and timing information on these different time scales, we can have a closer look into the physics of accretio n close to the neutron star and the properties of the accreted material. One of the most prominent time scales is the strong pulsation, i.e., the rotation period of the neutron star itself. Over one rotation, our view of the accretion column and the X-ray producing region changes significantly. This allows us to sample different physical conditions within the column but at the same time requires that we have viewing-angle-resolved models to properly describe them. In wind-fed high-mass X-ray binaries, the main source of aperiodic variability is the clumpy stellar wind, which leads to changes in the accretion rate (i.e., luminosity) as well as absorption column. This variability allows us to study the behavior of the accretion column as a function of luminosity, as well as to investigate the structure and physical properties of the wind, which we can compare to winds in isolated stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا