ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic signatures of reverberation mapping of close binaries of supermassive black holes in active galactic nuclei

90   0   0.0 ( 0 )
 نشر من قبل Jian-Min Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jian-Min Wang




اسأل ChatGPT حول البحث

Close binaries of supermassive black holes (CB-SMBHs) with separations of $lesssim 0.1$pc as the final stage of galaxy mergers are sources of low frequency gravitational waves (GW), however, they are still elusive observationally because they are not spatially resolved. Fortunately, reverberation as echoes of broad emission lines to ionizing continuum conveys invaluable information of the dynamics of broad-line regions (BLRs) governed by supermassive black holes in the central regions of active galactic nuclei (AGNs). In this paper, we demonstrate how to composite the hybrid 2-dimensional transfer functions of binary BLRs around the CB-SMBHs in AGNs, providing an opportunity of identifying them from reverberation mapping (RM) data. It is found that there are variation-coupling effects in the transfer functions, arising from the coupling of CB-SMBH light curves in the Fourier space. We provide semi-analytical formulations of the transfer functions for kinematic maps of the gas. For cases with the simplest variation-coupling effects, we make calculations for several BLR models and reveal significant distinctions from those of single active black holes. In principle, the difference is caused by the orbital motion of the CB-SMBH systems. In order to search for CB-SMBHs in time-domain space, selection of target candidates should focus on local AGNs with H$beta$ double-peaked profiles and weaker near-infrared emission. High-fidelity RM-campaigns of monitoring the targets in future will provide opportunities to reveal these kinematic signatures of the CB-SMBHs and hence for measurements of their orbital parameters.



قيم البحث

اقرأ أيضاً

97 - Jian-Min Wang , Edi Bon 2020
Changing-look active galactic nuclei (CL-AGNs) as a new subpopulation challenge some fundamental physics of AGNs because the timescales of the phenomenon can hardly be reconciled with accretion disk models. In this Letter{textit{}}, we demonstrate th e extreme case: close binaries of supermassive black holes (CB-SMBHs) with high eccentricities are able to trigger the CL transition through one orbit. In this scenario, binary black holes build up their own mini-disks by peeling gas off the inner edges of the circumbinary disk during the apastron phase, after which they tidally interact with the disks during the periastron phase to efficiently exchange angular momentum within one orbital period. For mini-disks rotating retrograde to the orbit, the tidal torque rapidly squeezes the tidal parts of the mini-disks into a much smaller radius, which rapidly results in higher accretion and short flares before the disks decline into type-2 AGNs. Prograde-rotation mini-disks gain angular momentum from the binary and rotate outward, which causes a rapid turn-off from type-1 to type-2. Turn-on occurs around the apastron phase. CB-SMBHs control cycle transitions between type-1 and type-2 with orbital periods but allow diverse properties in CL-AGN light curves.
148 - Pu Du , Kai-Xing Lu , Chen Hu 2016
In the sixth of the series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of H$beta$ emission lines for nine objects observed in th e campaign during 2012$-$2013. In order to correct the line-broadening caused by seeing and instruments before the analysis of velocity-resolved RM, we adopt Richardson-Lucy deconvolution to reconstruct their H$beta$ profiles. The validity and effectiveness of the deconvolution are checked out by Monte Carlo simulation. Five among the nine objects show clear dependence of time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with the case of virialized motions. The lags of the rest four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diversity of the kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.
Using different kinds of velocity tracers derived from the broad H$beta$ profile (in the mean or rms spectrum) and the corresponding virial factors $f$, the central supermassive black hole (SMBH) masses ($M_{rm BH}$) are calculated for a compiled sam ple of 120 reverberation-mapped (RM) AGNs. For its subsample of RM AGNs with measured stellar velocity dispersion ($sigma_{rm ast}$), the multivariate linear regression technique is used to calibrate the mean value $f$, as well as the variable FWHM-based $f$. It is found that, whether excluding the pseudo-bulges or not, $M_{rm BH}$ from the H$beta$ line dispersion in the mean spectrum ($sigma_{rm Hbeta,mean}$) has the smallest offset rms with respect to the $M_{rm BH}-sigma_{ast}$ relation. For the total sample excluding SDSS-RM AGNs, with respect to $M_{rm BH}$ from $sigma_{rm ast}$ or that from the H$beta$ line dispersion in the rms spectrum ($sigma_{rm Hbeta,rms}$), it is found that we can obtain $M_{rm BH}$ from the $sigma_{rm Hbeta,mean}$ with the smallest offset rms of 0.38 dex or 0.23 dex, respectively. It implies that, with respect to the H$beta$ FWHM, we prefer $sigma_{rm Hbeta,mean}$ to calculate $M_{rm BH}$ from the single-epoch spectrum. Using the FWHM-based $f$, we can improve $M_{rm BH}$ calculation from FWHM(H$beta$) and the mean $f$, with a decreased offset rms from 0.52 dex to 0.39 dex with respect to $M_{rm BH}$ from $sigma_{rm ast}$ for the subsample of 36 AGNs with $sigma_{rm ast}$. The value of 0.39 dex is almost the same as that from $sigma_{rm Hbeta,mean}$ and the mean $f$.
We performed an intensive accretion disk reverberation mapping campaign on the high accretion rate active galactic nucleus Mrk 142 in early 2019. Mrk 142 was monitored with the Neil Gehrels Swift Observatory for 4 months in X-rays and 6 UV/optical fi lters. Ground-based photometric monitoring was obtained from the Las Cumbres Observatory, Liverpool Telescope and Dan Zowada Memorial Observatory in ugriz filters and the Yunnan Astronomical Observatory in V. Mrk 142 was highly variable throughout, displaying correlated variability across all wavelengths. We measure significant time lags between the different wavelength light curves, finding that through the UV and optical the wavelength-dependent lags, $tau(lambda)$, generally follow the relation $tau(lambda) propto lambda^{4/3}$, as expected for the $Tpropto R^{-3/4}$ profile of a steady-state optically-thick, geometrically-thin accretion disk, though can also be fit by $tau(lambda) propto lambda^{2}$, as expected for a slim disk. The exceptions are the u and U band, where an excess lag is observed, as has been observed in other AGN and attributed to continuum emission arising in the broad-line region. Furthermore, we perform a flux-flux analysis to separate the constant and variable components of the spectral energy distribution, finding that the flux-dependence of the variable component is consistent with the $f_ upropto u^{1/3}$ spectrum expected for a geometrically-thin accretion disk. Moreover, the X-ray to UV lag is significantly offset from an extrapolation of the UV/optical trend, with the X-rays showing a poorer correlation with the UV than the UV does with the optical. The magnitude of the UV/optical lags is consistent with a highly super-Eddington accretion rate.
105 - Pu Du , Zhi-Xiang Zhang , Kai Wang 2018
As one of the series of papers reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 20 15-2017. Six of them are observed for the first time, and have generally higher 5100 AA luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the H$beta$ time lags of the newly observed objects are shorter than the values predicted by the canonical $R_{mathrm{Hbeta}}$-$L_{5100}$ relation of sub-Eddington AGNs, by factors of $sim2-6$, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the $R_{mathrm{Hbeta}}$-$L_{5100}$ relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe II and the profile of the H$beta$ emission line can be used as proxies of accretion rate, showing that the shortening of H$beta$ lags depends on accretion rates. The recent SDSS-RM discovery of shortened H$beta$ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical $R_{mathrm{Hbeta}}$-$L_{5100}$ relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا