ﻻ يوجد ملخص باللغة العربية
We study the ground state and low-energy subgap excitations of a finite wire of a time-reversal-invariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling $S_z= pm 1/2$ is distributed with fractions $pm 1/4$ localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy $E$ of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states.We discuss the effect of a Zeeman coupling $Delta_Z$ on one of the ends of the chain only. For $Delta_Z<E$, the energy difference of excitations with opposite spin orientation is $Delta_Z/2$, consistent with a spin projection $pm 1/4$. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.
We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term $t$, a chemical potential $mu$, an extended $s$-wave pairing $Delta$ and spin-orbit coupling $lambda$. We show that f
We study the scattering of the Dirac electrons by a point-like nonmagnetic impurity on the surface of a topological insulator, driven by a time-periodic gate voltage. It is found that, due to the doublet degenerate crossing points of different Floque
We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum
We show that harmonic driving of either the magnitude or the phase of the nearest-neighbor hopping amplitude in a p-wave superconducting wire can generate modes localized near the ends of the wire. The Floquet eigenvalues of these modes can either be
We find a new class of topological superconductors which possess an emergent time-reversal symmetry that is present only after projecting to an effective low-dimensional model. We show that a topological phase in symmetry class DIII can be realized i