ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters

83   0   0.0 ( 0 )
 نشر من قبل Kristian Ehlert
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kristian Ehlert




اسأل ChatGPT حول البحث

Feedback processes by active galactic nuclei in the centres of galaxy clusters appear to prevent large-scale cooling flows and impede star formation. However, the detailed heating mechanism remains uncertain. One promising heating scenario invokes the dissipation of Alfven waves that are generated by streaming cosmic rays (CRs). In order to study this idea, we use three-dimensional magneto-hydrodynamical simulations with the AREPO code that follow the evolution of jet-inflated bubbles that are filled with CRs in a turbulent cluster atmosphere. We find that a single injection event produces the CR distribution and heating rate required for a successful CR heating model. As a bubble rises buoyantly, cluster magnetic fields drape around the leading interface and are amplified to strengths that balance the ram pressure. Together with helical magnetic fields in the bubble, this initially confines the CRs and suppresses the formation of interface instabilities. But as the bubble continues to rise, bubble-scale eddies significantly amplify radial magnetic filaments in its wake and enable CR transport from the bubble to the cooling intracluster medium. By varying the jet parameters, we obtain a rich and diverse set of jet and bubble morphologies ranging from Fanaroff-Riley type I-like (FRI) to FRII-like jets. We identify jet energy as the leading order parameter (keeping the ambient density profiles fixed), whereas jet luminosity is primarily responsible for setting the Mach numbers of shocks around FRII-like sources. Our simulations also produce FRI-like jets that inflate bubbles without detectable shocks and show morphologies consistent with cluster observations.

قيم البحث

اقرأ أيضاً

We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil e we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes an overestimate of the star formation and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
We discuss the central role played by the X-ray study of hot baryons within galaxy clusters to reconstruct the assembly of cosmic structures and to trace the past history of star formation and accretion onto supermassive Black Holes (BHs). We shortly review the progress in this field contributed by the current generation of X-ray telescopes. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM: (a) When and how is entropy injected into the inter-galactic medium (IGM)? (b) What is the history of metal enrichment of the IGM? (c) What physical mechanisms determine the presence of cool cores in galaxy clusters? (d) How is the appearance of proto-clusters at z~2 related to the peak of star formation activity and BH accretion? We show that a highly efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. A similar survey can only be carried out with a Wide-Field X-ray Telescope (WFXT), which combines a high survey speed with a sharp PSF across the entire FoV. We emphasize the important synergies that WFXT will have with a number of future ground-based and space telescopes, covering from the radio to the X-ray bands. Finally, we discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
124 - Philipp Mertsch 2019
Modelling of cosmic ray transport and interpretation of cosmic ray data ultimately rely on a solid understanding of the interactions of charged particles with turbulent magnetic fields. The paradigm over the last 50 years has been the so-called quasi -linear theory, despite some well-known issues. In the absence of a widely accepted extension of quasi-linear theory, wave-particle interactions must also be studied in numerical simulations where the equations of motion are directly solved in a realisation of the turbulent magnetic field. The applications of such test particle simulations of cosmic rays are manifold: testing transport theories, computing parameters like diffusion coefficients or making predictions for phenomena beyond standard diffusion theories, e.g. for cosmic ray small-scale anisotropies. In this review, we seek to give a low-level introduction to test particle simulations of cosmic rays, enabling readers to perform their own test particle simulations. We start with a review of quasi-linear theory, highlighting some of its issues and suggested extensions. Next, we summarise the state-of-the-art in test particle simulations and give concrete recipes for generating synthetic turbulence. We present a couple of examples for applications of such simulations and comment on an important conceptual detail in the backtracking of particles.
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the g as physics: $(i)$ non-radiative, $(ii)$ radiative without AGN feedback, and $(iii)$ radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.
142 - I. Marini , A. Saro , S. Borgani 2020
Cosmological N-body simulations represent an excellent tool to study the formation and evolution of dark matter (DM) halos and the mechanisms that have originated the universal profile at the largest mass scales in the Universe. In particular, the co mbination of the velocity dispersion $sigma_mathrm{v}$ with the density $rho$ can be used to define the pseudo-entropy $S(r)=sigma_mathrm{v}^2/rho^{,2/3}$, whose profile is well-described by a simple power-law $Spropto,r^{,alpha}$. We analyze a set of cosmological hydrodynamical re-simulations of massive galaxy clusters and study the pseudo-entropy profiles as traced by different collisionless components in simulated galaxy clusters: DM, stars, and substructures. We analyze four sets of simulations, exploring different resolution and physics (N-body and full hydrodynamical simulations) to investigate convergence and the impact of baryons. We find that baryons significantly affect the inner region of pseudo-entropy profiles as traced by substructures, while DM particles profiles are characterized by an almost universal behavior, thus suggesting that the level of pseudo-entropy could represent a potential low-scatter mass-proxy. We compare observed and simulated pseudo-entropy profiles and find good agreement in both normalization and slope. We demonstrate, however, that the method used to derive observed pseudo-entropy profiles could introduce biases and underestimate the impact of mergers. Finally, we investigate the pseudo-entropy traced by the stars focusing our interest in the dynamical distinction between intracluster light (ICL) and the stars bound to the brightest cluster galaxy (BCG): the combination of these two pseudo-entropy profiles is well-described by a single power-law out to almost the entire cluster virial radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا