ﻻ يوجد ملخص باللغة العربية
Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SEMAXIS, a simple yet powerful framework to characterize word semantics using many semantic axes in word- vector spaces beyond sentiment. We demonstrate that SEMAXIS can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SEMAXIS outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons.
To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and
Word embedding is a Natural Language Processing (NLP) technique that automatically maps words from a vocabulary to vectors of real numbers in an embedding space. It has been widely used in recent years to boost the performance of a vari-ety of NLP ta
The Super Characters method addresses sentiment analysis problems by first converting the input text into images and then applying 2D-CNN models to classify the sentiment. It achieves state of the art performance on many benchmark datasets. However,
Diverse word representations have surged in most state-of-the-art natural language processing (NLP) applications. Nevertheless, how to efficiently evaluate such word embeddings in the informal domain such as Twitter or forums, remains an ongoing chal
Aspect-based Sentiment Analysis (ABSA) aims to identify the aspect terms, their corresponding sentiment polarities, and the opinion terms. There exist seven subtasks in ABSA. Most studies only focus on the subsets of these subtasks, which leads to va