ترغب بنشر مسار تعليمي؟ اضغط هنا

SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment

214   0   0.0 ( 0 )
 نشر من قبل Jisun An
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SEMAXIS, a simple yet powerful framework to characterize word semantics using many semantic axes in word- vector spaces beyond sentiment. We demonstrate that SEMAXIS can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SEMAXIS outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons.



قيم البحث

اقرأ أيضاً

To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and role-based categorizations of interpretability stakeholders in favor of a more granular framework that decouples stakeholders knowledge from their interpretability needs. We characterize stakeholders by their formal, instrumental, and personal knowledge and how it manifests in the contexts of machine learning, the data domain, and the general milieu. We additionally distill a hierarchical typology of stakeholder needs that distinguishes higher-level domain goals from lower-level interpretability tasks. In assessing the descriptive, evaluative, and generative powers of our framework, we find our more nuanced treatment of stakeholders reveals gaps and opportunities in the interpretability literature, adds precision to the design and comparison of user studies, and facilitates a more reflexive approach to conducting this research.
Word embedding is a Natural Language Processing (NLP) technique that automatically maps words from a vocabulary to vectors of real numbers in an embedding space. It has been widely used in recent years to boost the performance of a vari-ety of NLP ta sks such as Named Entity Recognition, Syntac-tic Parsing and Sentiment Analysis. Classic word embedding methods such as Word2Vec and GloVe work well when they are given a large text corpus. When the input texts are sparse as in many specialized domains (e.g., cybersecurity), these methods often fail to produce high-quality vectors. In this pa-per, we describe a novel method to train domain-specificword embeddings from sparse texts. In addition to domain texts, our method also leverages diverse types of domain knowledge such as domain vocabulary and semantic relations. Specifi-cally, we first propose a general framework to encode diverse types of domain knowledge as text annotations. Then we de-velop a novel Word Annotation Embedding (WAE) algorithm to incorporate diverse types of text annotations in word em-bedding. We have evaluated our method on two cybersecurity text corpora: a malware description corpus and a Common Vulnerability and Exposure (CVE) corpus. Our evaluation re-sults have demonstrated the effectiveness of our method in learning domain-specific word embeddings.
The Super Characters method addresses sentiment analysis problems by first converting the input text into images and then applying 2D-CNN models to classify the sentiment. It achieves state of the art performance on many benchmark datasets. However, it is not as straightforward to apply in Latin languages as in Asian languages. Because the 2D-CNN model is designed to recognize two-dimensional images, it is better if the inputs are in the form of glyphs. In this paper, we propose SEW (Squared English Word) method generating a squared glyph for each English word by drawing Super Characters images of each English word at the alphabet level, combining the squared glyph together into a whole Super Characters image at the sentence level, and then applying the CNN model to classify the sentiment within the sentence. We applied the SEW method to Wikipedia dataset and obtained a 2.1% accuracy gain compared to the original Super Characters method. For multi-modal data with both structured tabular data and unstructured natural language text, the modified SEW method integrates the data into a single image and classifies sentiment with one unified CNN model.
Diverse word representations have surged in most state-of-the-art natural language processing (NLP) applications. Nevertheless, how to efficiently evaluate such word embeddings in the informal domain such as Twitter or forums, remains an ongoing chal lenge due to the lack of sufficient evaluation dataset. We derived a large list of variant spelling pairs from UrbanDictionary with the automatic approaches of weakly-supervised pattern-based bootstrapping and self-training linear-chain conditional random field (CRF). With these extracted relation pairs we promote the odds of eliding the text normalization procedure of traditional NLP pipelines and directly adopting representations of non-standard words in the informal domain. Our code is available.
307 - Hang Yan , Junqi Dai , Tuo ji 2021
Aspect-based Sentiment Analysis (ABSA) aims to identify the aspect terms, their corresponding sentiment polarities, and the opinion terms. There exist seven subtasks in ABSA. Most studies only focus on the subsets of these subtasks, which leads to va rious complicated ABSA models while hard to solve these subtasks in a unified framework. In this paper, we redefine every subtask target as a sequence mixed by pointer indexes and sentiment class indexes, which converts all ABSA subtasks into a unified generative formulation. Based on the unified formulation, we exploit the pre-training sequence-to-sequence model BART to solve all ABSA subtasks in an end-to-end framework. Extensive experiments on four ABSA datasets for seven subtasks demonstrate that our framework achieves substantial performance gain and provides a real unified end-to-end solution for the whole ABSA subtasks, which could benefit multiple tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا