ﻻ يوجد ملخص باللغة العربية
In this paper we continue to develop further our prescription [arXiv:1602.02962] to holographically compute the conformal partial waves of CFT correlation functions using the gravitational open Wilson network operators in the bulk. In particular, we demonstrate how to implement it to compute four-point scalar partial waves in general dimension. In the process we introduce the concept of OPE modules, that helps us simplify the computations. Our result for scalar partial waves is naturally given in terms of the Gegenbauer polynomials. We also provide a simpler proof of a previously known recursion relation for the even dimensional CFT partial waves, which naturally leads us to an odd dimensional counterpart.
We propose a method to holographically compute the conformal partial waves in any decomposition of correlation functions of primary operators in conformal field theories using open Wilson network operators in the holographic gravitational dual. The W
We construct local probes in the static patch of Euclidean dS$_3$ gravity. These probes are Wilson line operators, designed by exploiting the Chern-Simons formulation of 3D gravity. Our prescription uses non-unitary representations of $so(4)simeq su(
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called `seed blocks in three dimensions.
We consider the Einstein-Hilbert action without cosmological constant in 5-dimensions and implement the Kaluza-Klein (KK) reduction by compactifying the fifth direction on a circle of small but finite radius. For non-zero compactification radius, the
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat