ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analytical Model for Wireless Mesh Networks with Collision-Free TDMA and Finite Queues

106   0   0.0 ( 0 )
 نشر من قبل Florian Kauer
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless mesh networks are a promising technology for connecting sensors and actuators with high flexibility and low investment costs. In industrial applications, however, reliability is essential. Therefore, two time-slotted medium access methods, DSME and TSCH, were added to the IEEE 802.15.4 standard. They allow collision-free communication in multi-hop networks and provide channel hopping for mitigating external interferences. The slot schedule used in these networks is of high importance for the network performance. This paper supports the development of efficient schedules by providing an analytical model for the assessment of such schedules, focused on TSCH. A Markov chain model for the finite queue on every node is introduced that takes the slot distribution into account. The models of all nodes are interconnected to calculate network metrics such as packet delivery ratio, end-to-end delay and throughput. An evaluation compares the model with a simulation of the Orchestra schedule. The model is applied to Orchestra as well as to two simple distributed scheduling algorithms to demonstrate the importance of traffic-awareness for achieving high throughput.



قيم البحث

اقرأ أيضاً

In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for Dy nWANs that need to be autonomous and robust as well as have high bandwidth utilization, high predictability degree of bandwidth allocation, and low communication delay in the presence of frequent topological changes to the communication network. Recent studies have shown that existing implementations cannot guarantee the necessary satisfaction of these timing requirements. We propose a self-stabilizing MAC algorithm for DynWANs that guarantees a short convergence period, and by that, it can facilitate the satisfaction of severe timing requirements, such as the above. Besides the contribution in the algorithmic front of research, we expect that our proposal can enable quicker adoption by practitioners and faster deployment of DynWANs that are subject changes in the network topology.
In an era where communication has a most important role in modern societies, designing efficient algorithms for data transmission is of the outmost importance. TDMA is a technology used in many communication systems such as satellite, cell phone as w ell as other wireless or mobile networks. Most 2G cellular systems as well as some 3G are TDMA based. In order to transmit data in such systems we need to cluster them in packages. To achieve a faster transmission we are allowed to preempt the transmission of any packet in order to resume at a later time. Preemption can be used to reduce idleness of some stations. Such preemptions though come with a reconfiguration cost in order to setup for the next transmission. In this paper we propose two algorithms which yield improved transmission scheduling. These two algorithms we call MGA and IMGA (Improved MGA). We have proven an approximation ratio for MGA and ran experiments to establish that it works even better in practice. In order to conclude that MGA will be a very helpful tool in constructing an improved schedule for packet routing using preemtion with a setup cost, we compare its results to two other efficient algorithms designed by researchers in the past: A-PBS(d+1) and GWA. To establish the efficiency of IMGA we ran experiments in comparison to MGA as well as A-PBS(d+1) and GWA. IMGA has proven to produce the most efficient schedule on all counts.
Wireless Mesh Networks (WMNs) have been extensively studied for nearly two decades as one of the most promising candidates expected to power the high bandwidth, high coverage wireless networks of the future. However, consumer demand for such networks has only recently caught up, rendering efforts at optimizing WMNs to support high capacities and offer high QoS, while being secure and fault tolerant, more important than ever. To this end, a recent trend has been the application of Machine Learning (ML) to solve various design and management tasks related to WMNs. In this work, we discuss key ML techniques and analyze how past efforts have applied them in WMNs, while noting some existing issues and suggesting potential solutions. We also provide directions on how ML could advance future research and examine recent developments in the field.
74 - Christophe Moy 2019
This paper describes the principles and implementation results of reinforcement learning algorithms on IoT devices for radio collision mitigation in ISM unlicensed bands. Learning is here used to improve both the IoT network capability to support a l arger number of objects as well as the autonomy of IoT devices. We first illustrate the efficiency of the proposed approach in a proof-of-concept based on USRP software radio platforms operating on real radio signals. It shows how collisions with other RF signals present in the ISM band are diminished for a given IoT device. Then we describe the first implementation of learning algorithms on LoRa devices operating in a real LoRaWAN network, that we named IoTligent. The proposed solution adds neither processing overhead so that it can be ran in the IoT devices, nor network overhead so that no change is required to LoRaWAN. Real life experiments have been done in a realistic LoRa network and they show that IoTligent device battery life can be extended by a factor 2 in the scenarios we faced during our experiment.
Unmanned aerial vehicles (UAVs) are widely deployed to enhance the wireless network capacity and to provide communication services to mobile users beyond the infrastructure coverage. Recently, with the help of a promising technology called network vi rtualization, multiple service providers (SPs) can share the infrastructures and wireless resources owned by the mobile network operators (MNOs). Then, they provide specific services to their mobile users using the resources obtained from MNOs. However, wireless resource sharing among SPs is challenging as each SP wants to maximize their utility/profit selfishly while satisfying the QoS requirement of their mobile users. Therefore, in this paper, we propose joint user association and wireless resource sharing problem in the cell-free UAVs-assisted wireless networks with the objective of maximizing the total network utility of the SPs while ensuring QoS constraints of their mobile users and the resource constraints of the UAVs deployed by MNOs. To solve the proposed mixed-integer non-convex problem, we decompose the proposed problem into two subproblems: users association, and resource sharing problems. Then, a two-sided matching algorithm is deployed in order to solve users association problem. We further deploy the whale optimization and Lagrangian relaxation algorithms to solve the resource sharing problem. Finally, extensive numerical results are provided in order to show the effectiveness of our proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا