ﻻ يوجد ملخص باللغة العربية
We report results of theoretical studies of thermoelectric efficiency of single-molecule junctions with long molecular linkers. The linker is simulated by a chain of identical sites described using a tight-binding model. It is shown that thermoelectric figure of merit ZT strongly depends on the bridge length, being controlled by the lineshape of electron transmission function within the tunnel energy range corresponding to HOMO/LUMO transport channel. Using the adopted model we demonstrate that ZT may significantly increase as the linker lengthens, and that gateway states on the bridge (if any) may noticeably affect the length-dependent ZT. Temperature dependences of ZT for various bridge lengths are analyzed. It is shown that broad minima emerge in ZT versus temperature curves whose positions are controlled by the bridge lengths.
The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while
In the present work, we theoretically analyze the steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. Thermally induced charge current in the system is explored using a nonequilibrium Greens functions for
In the present work we theoretically study the length dependence of thermopower of a single-molecule junction with a chain-like molecular bridge of an arbitrary length using a tight-binding model. We analyze conditions bringing a nonlinear growth of
We study the electronic contribution to the main thermoelectric properties of a molecular junction consisting of a single quantum dot coupled to graphene external leads. The system electrical conductivity (G), Seebeck coefficient ($S$), and the therm
We derive the efficiency at maximal power of a scale-invariant (critical) quantum junction in exact form. Both Fermi and Bose statistics are considered. We show that time-reversal invariance is spontaneously broken. For fermions we implement a new me