ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-dataset Person Re-Identification Using Similarity Preserved Generative Adversarial Networks

101   0   0.0 ( 0 )
 نشر من قبل Xintong Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person re-identification (Re-ID) aims to match the image frames which contain the same person in the surveillance videos. Most of the Re-ID algorithms conduct supervised training in some small labeled datasets, so directly deploying these trained models to the real-world large camera networks may lead to a poor performance due to underfitting. The significant difference between the source training dataset and the target testing dataset makes it challenging to incrementally optimize the model. To address this challenge, we propose a novel solution by transforming the unlabeled images in the target domain to fit the original classifier by using our proposed similarity preserved generative adversarial networks model, SimPGAN. Specifically, SimPGAN adopts the generative adversarial networks with the cycle consistency constraint to transform the unlabeled images in the target domain to the style of the source domain. Meanwhile, SimPGAN uses the similarity consistency loss, which is measured by a siamese deep convolutional neural network, to preserve the similarity of the transformed images of the same person. Comprehensive experiments based on multiple real surveillance datasets are conducted, and the results show that our algorithm is better than the state-of-the-art cross-dataset unsupervised person Re-ID algorithms.



قيم البحث

اقرأ أيضاً

Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a learning via translation framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train re-ID models with the translated images by supervised methods. Yet, being an essential part of this framework, unsupervised image-image translation suffers from the information loss of source-domain labels during translation. Our motivation is two-fold. First, for each image, the discriminative cues contained in its ID label should be maintained after translation. Second, given the fact that two domains have entirely different persons, a translated image should be dissimilar to any of the target IDs. To this end, we propose to preserve two types of unsupervised similarities, 1) self-similarity of an image before and after translation, and 2) domain-dissimilarity of a translated source image and a target image. Both constraints are implemented in the similarity preserving generative adversarial network (SPGAN) which consists of an Siamese network and a CycleGAN. Through domain adaptation experiment, we show that images generated by SPGAN are more suitable for domain adaptation and yield consistent and competitive re-ID accuracy on two large-scale datasets.
While attributes have been widely used for person re-identification (Re-ID) which aims at matching the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-i mage matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillance applications, remains a rarely investigated cross-modality matching problem in person Re-ID. In this work, we present this challenge and formulate this task as a joint space learning problem. By imposing an attribute-guided attention mechanism for images and a semantic consistent adversary strategy for attributes, each modality, i.e., images and attributes, successfully learns semantically correlated concepts under the guidance of the other. We conducted extensive experiments on three attribute datasets and demonstrated that the proposed joint space learning method is so far the most effective method for the attribute-image cross-modality person Re-ID problem.
RGB-Infrared (IR) cross-modality person re-identification (re-ID), which aims to search an IR image in RGB gallery or vice versa, is a challenging task due to the large discrepancy between IR and RGB modalities. Existing methods address this challeng e typically by aligning feature distributions or image styles across modalities, whereas the very useful similarities among gallery samples of the same modality (i.e. intra-modality sample similarities) is largely neglected. This paper presents a novel similarity inference metric (SIM) that exploits the intra-modality sample similarities to circumvent the cross-modality discrepancy targeting optimal cross-modality image matching. SIM works by successive similarity graph reasoning and mutual nearest-neighbor reasoning that mine cross-modality sample similarities by leveraging intra-modality sample similarities from two different perspectives. Extensive experiments over two cross-modality re-ID datasets (SYSU-MM01 and RegDB) show that SIM achieves significant accuracy improvement but with little extra training as compared with the state-of-the-art.
Cross-domain transfer learning (CDTL) is an extremely challenging task for the person re-identification (ReID). Given a source domain with annotations and a target domain without annotations, CDTL seeks an effective method to transfer the knowledge f rom the source domain to the target domain. However, such a simple two-domain transfer learning method is unavailable for the person ReID in that the source/target domain consists of several sub-domains, e.g., camera-based sub-domains. To address this intractable problem, we propose a novel Many-to-Many Generative Adversarial Transfer Learning method (M2M-GAN) that takes multiple source sub-domains and multiple target sub-domains into consideration and performs each sub-domain transferring mapping from the source domain to the target domain in a unified optimization process. The proposed method first translates the image styles of source sub-domains into that of target sub-domains, and then performs the supervised learning by using the transferred images and the corresponding annotations in source domain. As the gap is reduced, M2M-GAN achieves a promising result for the cross-domain person ReID. Experimental results on three benchmark datasets Market-1501, DukeMTMC-reID and MSMT17 show the effectiveness of our M2M-GAN.
Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by measuring the feature similarity without considering the distribution discrepancy among cameras, leading to degraded accuracy in label computation across cameras. Th is paper targets to address this challenge by studying a novel intra-inter camera similarity for pseudo-label generation. We decompose the sample similarity computation into two stage, i.e., the intra-camera and inter-camera computations, respectively. The intra-camera computation directly leverages the CNN features for similarity computation within each camera. Pseudo-labels generated on different cameras train the re-id model in a multi-branch network. The second stage considers the classification scores of each sample on different cameras as a new feature vector. This new feature effectively alleviates the distribution discrepancy among cameras and generates more reliable pseudo-labels. We hence train our re-id model in two stages with intra-camera and inter-camera pseudo-labels, respectively. This simple intra-inter camera similarity produces surprisingly good performance on multiple datasets, e.g., achieves rank-1 accuracy of 89.5% on the Market1501 dataset, outperforming the recent unsupervised works by 9+%, and is comparable with the latest transfer learning works that leverage extra annotations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا