ترغب بنشر مسار تعليمي؟ اضغط هنا

Bending of solitons in weak and slowly varying inhomogeneous plasma

52   0   0.0 ( 0 )
 نشر من قبل Abhik Mukherjee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev- Petviashvili equation is obtained with a chosen unperturbed ion density profile. Exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, whereas the amplitude of the soliton remaining constant



قيم البحث

اقرأ أيضاً

The self-consistent description of Langmuir wave and ion-sound wave turbulence in the presence of an electron beam is presented for inhomogeneous non-isothermal plasmas. Full numerical solutions of the complete set of kinetic equations for electrons, Langmuir waves, and ion-sound waves are obtained for a inhomogeneous unmagnetized plasma. The result show that the presence of inhomogeneity significantly changes the overall evolution of the system. The inhomogeneity is effective in shifting the wavenumbers of the Langmuir waves, and can thus switch between different process governing the weakly turbulent state. The results can be applied to a variety of plasma conditions, where we choose solar coronal parameters as an illustration, when performing the numerical analysis.
Starting from the governing equations for a quantum magnetoplasma including the quantum Bohm potential and electron spin-1/2 effects, we show that the system of quantum magnetohydrodynamic (QMHD) equations admit rarefactive solitons due to the balanc e between nonlinearities and quantum diffraction/tunneling effects. It is found that the electron spin-1/2 effect introduces a pressure-like term with negative sign in the QMHD equations, which modifies the shape of the solitary magnetosonic waves and makes them wider and shallower. Numerical simulations of the time-dependent system shows the development of rarefactive QMHD solitary waves that are modified by the spin effects.
Observational evidence in space and astrophysical plasmas with long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injectio n to dissipation scales, where the energy is converted to heat. Here we consider a simple system consisting of a magnetized plasma slab of electrons and a single ion species with a cross-field density gradient. We show that such a system is subject to an electron drift wave instability, known as the universal instability, which is stabilized only when the electron and ion thermal speeds are equal. For unequal thermal speeds, we find that the instability gives rise to turbulent energy exchange between ions and electrons that acts to equalize the thermal speeds. Consequently, this turbulent heating tends to equalize the component temperatures of pair plasmas and to heat ions to much higher temperatures than electrons for conventional mass-ratio plasmas.
Pinned solitons are a special class of nonlinear solutions created by a supersonically moving object in a fluid. They move with the same velocity as the moving object and thereby remain pinned to the object. A well known hydrodynamical phenomenon, th ey have been shown to exist in numerical simulation studies but to date have not been observed experimentally in a plasma. In this paper we report the first experimental excitation of pinned solitons in a dusty (complex) plasma flowing over a charged obstacle. The experiments are performed in a {Pi} shaped Dusty Plasma Experimental (DPEx) device in which a dusty plasma is created in the background of a DC glow discharge Ar plasma using micron sized kaolin dust particles. A biased copper wire creates a potential structure that acts as a stationary charged object over which the dust fluid is made to flow at a highly supersonic speed. Under appropriate conditions nonlinear stationary structures are observed in the laboratory frame that correspond to pinned structures moving with the speed of the obstacle in the frame of the moving fluid. A systematic study is made of the propagation characteristics of these solitons by carefully tuning the flow velocity of the dust fluid by changing the height of the potential structure. It is found that the nature of the pinned solitons changes from a single humped one to a multi-humped one and their amplitudes increase with an increase of the flow velocity of the dust fluid. The experimental findings are then qualitatively compared with the numerical solutions of a model forced Korteweg de Vries (fKdV) equation.
The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic equation. In the usual kinetic limit, the resulting equation ha s similarity to zero energy Schrodingers equation. This has helped in obtaining some exact eigenmode solutions in both cartesian and cylindrical geometries for certain nontrivial density profiles. The corresponding velocity profiles and the discrete eigenfrequencies are obtained for several interesting situations and their physics discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا