ﻻ يوجد ملخص باللغة العربية
Bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev- Petviashvili equation is obtained with a chosen unperturbed ion density profile. Exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, whereas the amplitude of the soliton remaining constant
The self-consistent description of Langmuir wave and ion-sound wave turbulence in the presence of an electron beam is presented for inhomogeneous non-isothermal plasmas. Full numerical solutions of the complete set of kinetic equations for electrons,
Starting from the governing equations for a quantum magnetoplasma including the quantum Bohm potential and electron spin-1/2 effects, we show that the system of quantum magnetohydrodynamic (QMHD) equations admit rarefactive solitons due to the balanc
Observational evidence in space and astrophysical plasmas with long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injectio
Pinned solitons are a special class of nonlinear solutions created by a supersonically moving object in a fluid. They move with the same velocity as the moving object and thereby remain pinned to the object. A well known hydrodynamical phenomenon, th
The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic equation. In the usual kinetic limit, the resulting equation ha