ترغب بنشر مسار تعليمي؟ اضغط هنا

Incompressive Energy Transfer in the Earths Magnetosheath: Magnetospheric Multiscale Observations

106   0   0.0 ( 0 )
 نشر من قبل Riddhi Bandyopadhyay
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using observational data from the emph{Magnetospheric Multiscale} (MMS) Mission in the Earths magnetosheath, we estimate the energy cascade rate using different techniques within the framework of incompressible magnetohydrodynamic (MHD) turbulence. At the energy containing scale, the energy budget is controlled by the von Karman decay law. Inertial range cascade is estimated by fitting a linear scaling to the mixed third-order structure function. Finally, we use a multi-spacecraft technique to estimate the Kolmogorov-Yaglom-like cascade rate in the kinetic range, well below the ion inertial length scale. We find that the inertial range cascade rate is almost equal to the one predicted by the von Karman law at the energy containing scale, while the cascade rate evaluated at the kinetic scale is somewhat lower, as anticipated in theory~citep{Yang2017PoP}. Further, in agreement with a recent study~citep{Hadid2018PRL}, we find that the incompressive cascade rate in the Earths magnetosheath is about $1000$ times larger than the cascade rate in the pristine solar wind.

قيم البحث

اقرأ أيضاً

We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a ma gnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 r{ho}i (~ 30 r{ho}e) in the circular cross-section perpendicular to its axis, where r{ho}i and r{ho}e are respectively the proton and electron gyroradius. There are no clear enhancement seen in high energy electron fluxes, but an enhancement in the perpendicular electron fluxes at ~ 90{deg} pitch angles inside the magnetic hole is seen, implying that the electron are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section (in the M-N plane). These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
Protons (ionized hydrogen) in the solar wind frequently exhibit distinct temperatures ($T_{perp p}$ and $T_{parallel p}$) perpendicular and parallel to the plasmas background magnetic-field. Numerous prior studies of the interplanetary solar-wind hav e shown that, as plasma beta ($beta_{parallel p}$) increases, a narrower range of temperature-anisotropy ($R_pequiv T_{perp p},/,T_{parallel p}$) values is observed. Conventionally, this effect has been ascribed to the actions of kinetic microinstabilities. This study is the first to use data from the Magnetospheric Multiscale Mission (MMS) to explore such $beta_{parallel p}$-dependent limits on $R_p$ in Earths magnetosheath. The distribution of these data across the $(beta_{parallel p},R_p)$-plane reveals limits on both $R_p>1$ and $R_p<1$. Linear Vlasov theory is used to compute contours of constant growth-rate for the ion-cyclotron, mirror, parallel-firehose, and oblique-firehose instabilities. These instability thresholds closely align with the contours of the data distribution, which suggests a strong association of instabilities with extremes of ion temperature anisotropy in the magnetosheath. The potential for instabilities to regulate temperature anisotropy is discussed.
80 - Terry Z. Liu , Xin An , Hui Zhang 2020
Foreshock transients are ion kinetic structures in the ion foreshock. Due to their dynamic pressure perturbations, they can disturb the bow shock and magnetosphere-ionosphere system. They can also accelerate particles contributing to shock accelerati on. However, it is still unclear how exactly they form. Recent particle-in-cell simulations point out the important role of electric field and Hall current in the formation process. To further examine this, we use data from the Magnetospheric Multiscale (MMS) mission to apply case studies on two small (1000-2000 km) foreshock transient events that just started to form. In event 1 where MMS were in a tetrahedral formation, we show that the current density configuration, which determined the magnetic field profile, was mainly driven by Hall currents generated by demagnetized foreshock ions. The resulting time variation of the magnetic field induced electric field that drove cold plasma moving outward with magnetic field lines. In event 2 where MMS were in a string-of-pearls formation, we analyze the evolution of field and plasma parameters. We show that the magnetic flux and mass flux were transported outward from the core resulting in the steepening of the boundary. The steepened boundary, which trapped more foreshock ions and caused stronger demagnetization of foreshock ions, nonlinearly further enhanced the Hall current. Based on our observations, we propose a physical formation process that the positive feedback of foreshock ions on the varying magnetic field caused by the foreshock ion Hall current enables an instability and the growth of the structure.
Alfven vortex is a multi-scale nonlinear structure which contributes to intermittency of turbulence. Despite previous explorations mostly on the spatial properties of the Alfven vortex (i.e., scale, orientation, and motion), the plasma characteristic s within the Alfven vortex are unknown. Moreover, the connection between the plasma energization and the Alfven vortex still remains unclear. Based on high resolution in-situ measurement from the Magnetospheric Multiscale (MMS) mission, we report for the first time, distinctive plasma features within an Alfven vortex. This Alfven vortex is identified to be two-dimensional ($k_{bot} gg k_{|}$) quasi-monopole with a radius of ~10 proton gyroscales. Its magnetic fluctuations $delta B_{bot}$ are anti correlated with velocity fluctuations $delta V_{bot}$, thus the parallel current density $j_{|}$ and flow vorticity $omega_{|}$ are anti-aligned. In different part of the vortex (i.e., edge, middle, center), the ion and electron temperatures are found to be quite different and they behave in the reverse trend: the ion temperature variations are correlated with $j_{|}$, while the electron temperature variations are correlated with $omega_{|}$. Furthermore, the temperature anisotropies, together with the non-Maxwellian kinetic effects, exhibit strong enhancement at peaks of $|omega_{|}| (|j_{|}|)$ within the vortex. Comparison between observations and numerical/theoretical results are made. In addition, the energy-conversion channels and the compressibility associated with the Alfven vortex are discussed. These results may help to understand the link between coherent vortex structures and the kinetic processes, which determines how turbulence energy dissipate in the weakly-collisional space plasmas.
A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale ki netic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D $equiv -Pi_{ij} D_{ij}$) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earths magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا