ﻻ يوجد ملخص باللغة العربية
We propose a technique for robust optomechanical state transfer using phase-tailored composite pulse driving with constant amplitude. Our proposal is inspired by coherent control techniques in lossless driven qubits. We demonstrate that there exist optimal phases for maximally robust excitation exchange in lossy strongly-driven optomechanical state transfer. In addition, our proposed composite phase driving also protects against random variations in the parameters of the system. However, this driving can take the system out of its steady state. For this reason, we use the ideal optimal phases to produce smooth sequences that both maintain the system close to its steady state and optimize the robustness of optomechanical state transfer.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime. We find that the optomechanical lattice can be equivalent to a top
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can highly achieve quantum state transfer between sites in a cavity quantum optomechanical ne
We propose a fast and robust quantum state transfer protocol employing a Su-Schrieffer-Heeger chain, where the interchain couplings vary in time. Based on simple considerations around the terms involved in the definition of the adiabatic invariant, w
We propose a scheme for the creation of robust entanglement between a movable mirror and atomic ensemble at the macroscopic level in coupled optomechanical system. In experimentally accessible parameter regimes, we show that critical temperature of t
We demonstrate that a geometric phase, generated via a sequence of four optomechanical interactions, can be used to increase, or generate nonlinearities in the unitary evolution of a mechanical resonator. Interactions of this form lead to new mechani