ﻻ يوجد ملخص باللغة العربية
In the current series of two papers, we study the long time behavior of the following random Fisher-KPP equation $$ u_t =u_{xx}+a(theta_tomega)u(1-u),quad xinR, eqno(1) $$ where $omegainOmega$, $(Omega, mathcal{F},mathbb{P})$ is a given probability space, $theta_t$ is an ergodic metric dynamical system on $Omega$, and $a(omega)>0$ for every $omegainOmega$. We also study the long time behavior of the following nonautonomous Fisher-KPP equation, $$ u_t=u_{xx}+a_0(t)u(1-u),quad xinR, eqno(2) $$ where $a_0(t)$ is a positive locally Holder continuous function. In the first part of the series, we studied the stability of positive equilibria and the spreading speeds of (1) and (2). In this second part of the series, we investigate the existence and stability of transition fronts of (1) and (2). We first study the transition fronts of (1). Under some proper assumption on $a(omega)$, we show the existence of random transition fronts of (1) with least mean speed greater than or equal to some constant $underline{c}^*$ and the nonexistence of ranndom transition fronts of (1) with least mean speed less than $underline{c}^*$. We prove the stability of random transition fronts of (1) with least mean speed greater than $underline{c}^*$. Note that it is proved in the first part that $underline{c}^*$ is the infimum of the spreading speeds of (1). We next study the existence and stability of transition fronts of (2). It is not assumed that $a(omega)$ and $a_0(t)$ are bounded above and below by some positive constants. Many existing results in literature on transition fronts of Fisher-KPP equations have been extended to the general cases considered in the current paper. The current paper also obtains several new results.
In the current series of two papers, we study the long time behavior of the following random Fisher-KPP equation $$ u_t =u_{xx}+a(theta_tomega)u(1-u),quad xinmathbb{R} $$ where $omegainOmega$, $(Omega, mathcal{F},mathbb{P})$ is a given probability sp
We study entire solutions to homogeneous reaction-diffusion equations in several dimensions with Fisher-KPP reactions. Any entire solution $0<u<1$ is known to satisfy [ lim_{tto -infty} sup_{|x|le c|t|} u(t,x) = 0 qquad text{for each $c<2sqrt{f(0)},$
We study the asymptotic spreading of Kolmogorov-Petrovsky-Piskunov (KPP) fronts in heterogeneous shifting habitats, with any number of shifting speeds, by further developing the method based on the theory of viscosity solutions of Hamilton-Jacobi equ
Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in $ItimesR^d$, where $I$ is a right-halfline. We prove logarithmic Sobolev and Poincare inequalities with respect to an associated evolution sy