ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-messenger study of the Milky Ways stellar disc and bulge with LISA, Gaia and LSST

140   0   0.0 ( 0 )
 نشر من قبل Valeriya Korol
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The upcoming LISA mission offers the unique opportunity to study the Milky Way through gravitational wave radiation from Galactic binaries. Among the variety of Galactic gravitational wave sources, LISA is expected to individually resolve signals from $sim 10^5$ ultra-compact double white dwarf (DWD) binaries. DWDs detected by LISA will be distributed across the Galaxy, including regions that are hardly accessible to electromagnetic observations such as the inner part of the Galactic disc, the bulge and beyond. We quantitatively show that the large number of DWD detections will allow us to use these systems as tracers of the Milky Way potential. We demonstrate that density profiles of DWDs detected by LISA may provide constraints on the scale length parameters of the baryonic components that are both accurate and precise, with statistical errors of a few percent to $10$ percent level. Furthermore, the LISA sample is found to be sufficient to disentangle between different (commonly used) disc profiles, by well covering the disc out to sufficiently large radii. Finally, up to $sim 80$ DWDs can be detected through both electromagnetic and gravitational wave radiation. This enables multi-messenger astronomy with DWD binaries and allows one to extract their physical properties using both probes. We show that fitting the Galactic rotation curve constructed using distances inferred from gravitational waves {it and} proper motions from optical observations yield a unique and competitive estimate of the bulge mass. Instead robust results for the stellar disc mass are contingent upon knowledge of the Dark Matter content.

قيم البحث

اقرأ أيضاً

We investigate the inner regions of the Milky Way with a sample of unprecedented size and coverage thanks to APOGEE DR16 and {it Gaia} DR3 data. Our inner Galactic sample has more than 26,000 stars within $|X_{rm Gal}| <5$ kpc, $|Y_{rm Gal}| <3.5$ kp c, $|Z_{rm Gal}| <1$ kpc, and we also make the analysis for a foreground-cleaned sub-sample of 8,000 stars more representative of the bulge-bar populations. The inner Galaxy shows a clear chemical discontinuity in key abundance ratios [$alpha$/Fe], [C/N], and [Mn/O], probing different enrichment timescales, which suggests a star formation gap (quenching) between the high- and low-$alpha$ populations. For the first time, we are able to fully characterize the different populations co-existing in the innermost regions of the Galaxy via joint analysis of the distributions of rotational velocities, metallicities, orbital parameters and chemical abundances. The chemo-kinematic analysis reveals the presence of the bar; of an inner thin disk; of a thick disk, and of a broad metallicity population, with a large velocity dispersion, indicative of a pressure supported component. We find and characterize chemically and kinematically a group of counter-rotating stars, which could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disk, which migrated into the bulge. Finally, based on the 6D information we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpcs. Even stars with a high probability of belonging to the bar show the chemical bimodality in the [$alpha$/Fe] vs. [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant distinct chemical abundance ratio signature.
The nuclear stellar disc (NSD) is a flattened stellar structure that dominates the gravitational potential of the Milky Way at Galactocentric radii $30 lesssim R lesssim 300{, rm pc}$. In this paper, we construct axisymmetric Jeans dynamical models o f the NSD based on previous photometric studies and we fit them to line-of-sight kinematic data of APOGEE and SiO maser stars. We find that (i) the NSD mass is lower but consistent with the mass independently determined from photometry by Launhardt et al. (2002). Our fiducial model has a mass contained within spherical radius $r=100{, rm pc}$ of $M(r<100{, rm pc}) = 3.9 pm 1 times 10^8 {, rm M_odot}$ and a total mass of $M_{rm NSD} = 6.9 pm 2 times 10^8 {, rm M_odot}$. (ii) The NSD might be the first example of a vertically biased disc, i.e. with ratio between the vertical and radial velocity dispersion $sigma_z/sigma_R>1$. Observations and theoretical models of the star-forming molecular gas in the central molecular zone suggest that large vertical oscillations may be already imprinted at stellar birth. However, the finding $sigma_z/sigma_R > 1$ depends on a drop in the velocity dispersion in the innermost few tens of parsecs, on our assumption that the NSD is axisymmetric, and that the available (extinction corrected) stellar samples broadly trace the underlying light and mass distributions, all of which need to be established by future observations and/or modelling. (iii) We provide the most accurate rotation curve to date for the innermost $500 {, rm pc}$ of our Galaxy.
We present the results of a large-scale proper motion study of the central ~36x16 of the Milky Way, based on our high angular resolution GALACTICNUCLEUS survey (epoch 2015) combined with the HST Paschen-alpha survey (epoch 2008). Our catalogue contai ns roughly 80,000 stars, an unprecedented kinematic data set for this region. We describe the data analysis and the preparation of the proper motion catalogue. We verify the catalogue by comparing our results with measurements from previous work and data. We provide a preliminary analysis of the kinematics of the studied region. Foreground stars in the Galactic Disc can be easily identified via their small reddening. Consistent with previous work and with our expectations, we find that stars in the nuclear stellar disc have a smaller velocity dispersion than Bulge stars, in particular in the direction perpendicular to the Galactic Plane. The rotation of the nuclear stellar disc can be clearly seen in the proper motions parallel to the Galactic Plane. Stars on the near side of the nuclear stellar disc are less reddened than stars on its far side. Proper motions enable us to detect co-moving groups of stars that may be associated with young clusters dissolving in the Galactic Centre that are difficult to detect by other means. We demonstrate a technique based on a density clustering algorithm that can be used to find such groups of stars.
Recent work highlights that tens of Galactic double neutron stars are likely to be detectable in the millihertz band of the space-based gravitational-wave observatory, LISA. Kyutoku and Nishino point out that some of these binaries might be detectabl e as radio pulsars using the Square Kilometer Array (SKA). We point out that the joint LISA+SKA detection of a $f_text{gw}gtrsim$1 mHz binary, corresponding to a binary period of $lesssim$400 s, would enable precision measurements of ultra-relativistic phenomena. We show that, given plausible assumptions, multi-messenger observations of ultra-relativistic binaries can be used to constrain the neutron star equation of state with remarkable fidelity. It may be possible to measure the mass-radius relation with a precision of $approx$0.2% after 10 yr of observations with the SKA. Such a measurement would be roughly an order of magnitude more precise than possible with other proposed observations. We summarize some of the other remarkable science made possible with multi-messenger observations of millihertz binaries, and discuss the prospects for the detection of such objects.
We investigate the stellar kinematics of the Galactic disc in 7 $<$ $R$ $<$ 13,kpc using a sample of 118,945 red giant branch (RGB) stars from LAMOST and Gaia. We characterize the median, dispersion and skewness of the distributions of the 3D stellar velocities, actions and orbital parameters across the age-metallicity and the disc $R$ -- $Z$ plane. Our results reveal abundant but clear stellar kinematic patterns and structures in the age -- metallicity and the disc $R$ -- $Z$ plane. The most prominent feature is the strong variations of the velocity, action, and orbital parameter distributions from the young, metal-rich thin disc to the old, metal-poor thick disc, a number of smaller-scale structures -- such as velocity streams, north-south asymmetries, and kinematic features of spiral arms -- are clearly revealed. Particularly, the skewness of $V_{phi}$ and $J_{phi}$ reveals a new substructure at $Rsimeq12$,kpc and $Zsimeq0$,kpc, possibly related to dynamical effects of spiral arms in the outer disc. We further study the stellar migration through analysing the stellar orbital parameters and stellar birth radii. The results suggest that the thick disc stars near the solar radii and beyond are mostly migrated from the inner disc of $Rsim4 - 6$,kpc due to their highly eccentrical orbits. Stellar migration due to dynamical processes with angular momentum transfer (churning) are prominent for both the old, metal-rich stars (outward migrators) and the young metal-poor stars (inward migrators). The spatial distribution in the $R$ -- $Z$ plane for the inward migrators born at a Galactocentric radius of $>$12,kpc show clear age stratifications, possibly an evidence that these inward migrators are consequences of splashes triggered by merger events of satellite galaxies that have been lasted in the past few giga years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا