ترغب بنشر مسار تعليمي؟ اضغط هنا

Young Accreting Compact Objects in M31: The Combined Power of NuSTAR, Chandra, and Hubble

135   0   0.0 ( 0 )
 نشر من قبل Margaret Lazzarini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 15 high mass X-ray binary (HMXB) candidates in the disk of M31 for which we are able to infer compact object type, spectral type of the donor star, and age using multiwavelength observations from NuSTAR, Chandra, and the Hubble Space Telescope (HST). The hard X-ray colors and luminosities from NuSTAR permit the tentative classification of accreting X-ray binary systems by compact object type, distinguishing black hole from neutron star systems. We find hard state black holes, pulsars, and non-magnetized neutron stars associated with optical point source counterparts with similar frequency. We also find nine non-magnetized neutron stars coincident with globular clusters and an equal number of pulsars with and without point source optical counterparts. We perform spectral energy distribution (SED) fitting for the most likely optical counterparts to the HMXB candidates, finding 7 likely high mass stars and 1 possible red Helium burning star. The remaining 7 HMXB optical counterparts have poor SED fits, so their companion stars remain unclassified. Using published star formation histories, we find that the majority of HMXB candidates --- X-ray sources with UV-bright point source optical counterpart candidates --- are found in regions with star formation bursts less than 50 Myr ago, with 3 associated with young stellar ages (<10 Myr). This is consistent with similar studies of HMXB populations in the Magellanic Clouds, M33, NGC 300, and NGC 2403.



قيم البحث

اقرأ أيضاً

The X-ray source populations within galaxies are typically difficult to identify and classify from X-ray data alone. We are able to break through this barrier by combining deep new Chandra ACIS-I observations with extensive Hubble Space Telescope ima ging from the PHAT survey of the M31 disk. We detect 373 X-ray sources down to 0.35-8.0 keV flux of 10$^{-15}$ erg cm$^{-2}$ s$^{-1}$ over 0.4 square degrees, 170 of which are reported for the first time. We identify optical counterpart candidates for 188 of the 373 sources, after using the HST data to correct the absolute astrometry of our Chandra imaging to 0.1$$. While 58 of these 188 are associated with point sources potentially in M31, over half (107) of the counterpart candidates are extended background galaxies, 5 are star clusters, 12 are foreground stars, and 6 are supernova remnants. Sources with no clear counterpart candidate are most likely to be undetected background galaxies and low-mass X-ray binaries in M31. The 58 point sources that are not consistent with foreground stars are bright enough that they could be high mass stars in M31; however, all but 8 have optical colors inconsistent with single stars, suggesting that many could be background galaxies or binary counterparts. For point-like counterparts, we examine the star formation history of the surrounding stellar populations to look for a young component that could be associated with a high mass X-ray binary. For the 40 point-like counterpart candidates associated with young populations, we find that their age distribution has two peaks at 15-20 Myr and 40-50 Myr. If we only consider the 8 counterpart candidates with typical high-mass main sequence optical star colors, their age distribution peaks mimic those of the sample of 40. Finally, we find that intrinsic faintness, and not extinction, is the main limitation for finding further counterpart candidates.
We present Spitzer and Chandra observations of the nearby (~260 pc) embedded stellar cluster in the Serpens Cloud Core. We observed, using Spitzers IRAC and MIPS instruments, in six wavelength bands from 3 to 70 ${mu}m$, to detect thermal emission fr om circumstellar disks and protostellar envelopes, and to classify stars using color-color diagrams and spectral energy distributions (SEDs). These data are combined with Chandra observations to examine the effects of circumstellar disks on stellar X-ray properties. Young diskless stars were also identified from their increased X-ray emission. We have identified 138 YSOs in Serpens: 22 class 0/I, 16 flat spectrum, 62 class II, 17 transition disk, and 21 class III stars; 60 of which exhibit X-ray emission. Our primary results are the following: 1.) ten protostars detected previously in the sub-millimeter are detected at lambda < 24 microns, seven at lambda < 8 microns, 2.) the protostars are more closely grouped than more evolved YSOs (median separation : ~0.024 pc, and 3.) the luminosity and temperature of the X-ray emitting plasma around these YSOs does not show any significant dependence on evolutionary class. We combine the infrared derived values of AK and X-ray values of NH for 8 class III objects and find that the column density of hydrogen gas per mag of extinctions is less than half the standard interstellar value, for AK > 1. This may be the result of grain growth through coagulation and/or the accretion of volatiles in the Serpens cloud core.
85 - E. G. Koerding 2007
Recently, it has been shown that soft-state black hole X-ray binaries and active galactic nuclei populate a plane in the space defined by the black hole mass, accretion rate and characteristic frequency. We show that this plane can be extended to har d-state objects if one allows a constant offset for the frequencies in the soft and the hard state. During a state transition the frequencies rapidly move from one scaling to the other depending on an additional parameter, possibly the disk-fraction. The relationship between frequency, mass and accretion rate can be further extended by including weakly accreting neutron stars. We explore if the lower kHz QPOs of neutron stars and the dwarf nova oscillations of white dwarfs can be included as well and discuss the physical implications of the found correlation.
103 - S.B. Popov 2002
We present Log N -- Log S distribution for close-by young isolated neutron stars. On the basis of this distribution it is shown that the seven ROSAT isolated neutron stars (if they are young cooling objects) are genetically related to the Gould Belt. We predict, that there are about few tens unidentified close-by young isolated neutron stars in the ROSAT All-Sky Survey. The possibility that these seven peculiar sources contain a neutron star less massive and more magnetized then in ordinary radiopulsars is also discussed. In the aftermath of relatively close recent supernova explosions (1 kpc around the Sun, a few Myrs ago), a few black holes might have been formed, according to the local initial mass function. We thus discuss the possibility of determining approximate positions of close-by isolated black holes using data on runaway stars and simple calculations of binary evolution and disruption.
In studies of accreting black holes in binary systems, empirical relations have been proposed to quantify the coupling between accretion processes and ejection mechanisms. These processes are probed respectively by means of X-ray and radio/optical-in frared observations. The relations predict, given certain accretion conditions, the expected energy output in the form of a jet. We investigated this coupling by studying the black hole candidate Swift J1753.5-0127, via multiwavelength coordinated observations over a period of ~4 years. We present the results of our campaign showing that, all along the outburst, the source features a jet that is fainter than expected from the empirical correlation between the radio and the X-ray luminosities in hard spectral state. Because the jet is so weak in this system the near-infrared emission is, unusually for this state and luminosity, dominated by thermal emission from the accretion disc. We briefly discuss the importance and the implications of a precise determination of both the slope and the normalisation of the correlations, listing some possible parameters that broadband jet models should take into account to explain the population of sources characterized by a dim jet. We also investigate whether our data can give any hint about the nature of the compact object in the system, since its mass has not been dynamically measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا