ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning CICY Threefolds

62   0   0.0 ( 0 )
 نشر من قبل Kieran Bull
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to which both Synthetic Minority Oversampling Technique (SMOTE) and permutations of the CICY matrix are used to decrease the class imbalance and improve performance. In each case study, we employ a genetic algorithm to optimise the hyperparameters of the neural network. We demonstrate that our approach provides quick diagnostic tools capable of shortlisting quasi-realistic string models based on compactification over smooth CICYs and further supports the paradigm that classes of problems in algebraic geometry can be machine learned.



قيم البحث

اقرأ أيضاً

Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h ^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of Kahler parameters of CICY threefolds. The numerical accuracy of machine learning improves upon seeding the training set with a small number of samples at higher $h^{1,1}$.
64 - Michael R. Douglas 2021
David Mumford made groundbreaking contributions in many fields, including the pure mathematics of algebraic geometry and the applied mathematics of machine learning and artificial intelligence. His work in both fields influenced my career at several key moments.
Systematic classification of Z2xZ2 orbifold compactifications of the heterotic-string was pursued by using its free fermion formulation. The method entails random generation of string vacua and analysis of their entire spectra, and led to discovery o f spinor-vector duality and three generation exophobic string vacua. The classification was performed for string vacua with unbroken SO(10) GUT symmetry, and progressively extended to models in which the SO(10) symmetry is broken to the SO(6)xSO(4), SU(5)xU(1), SU(3)xSU(2)xU(1)^2 and SU(3)xU(1)xSU(2)^2 subgroups. Obtaining sizeable number of phenomenologically viable vacua in the last two cases requires identification of fertility conditions. Adaptation of machine learning tools to identify the fertility conditions will be useful when the frequency of viable models becomes exceedingly small in the total space of vacua.
Models of physics beyond the Standard Model often contain a large number of parameters. These form a high-dimensional space that is computationally intractable to fully explore. Experimental constraints project onto a subspace of viable parameters, b ut mapping these constraints to the underlying parameters is also typically intractable. Instead, physicists often resort to scanning small subsets of the full parameter space and testing for experimental consistency. We propose an alternative approach that uses generative models to significantly improve the computational efficiency of sampling high-dimensional parameter spaces. To demonstrate this, we sample the constrained and phenomenological Minimal Supersymmetric Standard Models subject to the requirement that the sampled points are consistent with the measured Higgs boson mass. Our method achieves orders of magnitude improvements in sampling efficiency compared to a brute force search.
We construct new examples of solutions of the Hull-Strominger system on non-Kahler torus bundles over K3 surfaces, with the property that the connection $ abla$ on the tangent bundle is Hermite-Yang-Mills. With this ansatz for the connection $ abla$, we show that the existence of solutions reduces to known results about moduli spaces of slope-stable sheaves on a K3 surface, combined with elementary analytical methods. We apply our construction to find the first examples of T-dual solutions of the Hull-Strominger system on compact non-Kahler manifolds with different topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا