ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenides have been the primary materials of interest in the field of valleytronics for their potential in information storage, yet the limiting factor has been achieving long valley decoherence times. We explore the dynamics of four monolayer TMDCs (MoS$_2$, MoSe$_2$, WS$_2$, WSe$_2$) using ab initio calculations to describe electron-electron and electron-phonon interactions. By comparing calculations which both omit and include relativistic effects, we isolate the impact of spin-resolved spin-orbit coupling on transport properties. In our work, we find that spin-orbit coupling increases carrier lifetimes at the valence band edge by an order of magnitude due to spin-valley locking, with a proportional increase in the hole mobility at room temperature. At temperatures of 50~K, we find intervalley scattering times on the order of 100 ps, with a maximum value ~140 ps in WSe$_2$. Finally, we calculate excited-carrier generation profiles which indicate that direct transitions dominate across optical energies, even for WSe$_2$ which has an indirect band gap. Our results highlight the intriguing interplay between spin and valley degrees of freedom critical for valleytronic applications. Further, our work points towards interesting quantum properties on-demand in transition metal dichalcogenides that could be leveraged via driving spin, valley and phonon degrees of freedom.
We study valley-dependent spin transport theoretically in monolayer transition-metal dichalcogenides in which a variety of spin and valley physics are expected because of spin-valley coupling. The results show that the spins are valley-selectively ex
We study both the intrinsic and extrinsic spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides. We find that whereas the skew-scattering contribution is suppressed by the large band gap, the side-jump contribution is
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num
In this work, we predict the emergence of the valley Edelstein Effect (VEE), which is an electric-field-induced spin polarization effect, in gated monolayer transition metal dichalcogenides (MTMDs). We found an unconventional valley-dependent respons
Manipulating the valley degree of freedom to encode information for potential valleytronic devices has ignited a new direction in solid-state physics. A significant, fundamental challenge in the field of valleytronics is how to generate and regulate