ﻻ يوجد ملخص باللغة العربية
We explore the possibility that the Fast Radio Bursts (FRBs) are powered by magnetic reconnection in magnetars, triggered by Axion Quark Nugget (AQN) dark matter. In this model, the magnetic reconnection is ignited by the shock wave which develops when the nuggets Mach number $M gg 1$. These shock waves generate very strong and very short impulses expressed in terms of pressure $Delta p/psim M^2$ and temperature $Delta T/Tsim M^2$ in the vicinity of (would be) magnetic reconnection area. We find that the proposed mechanism produces a coherent emission which is consistent with current data, in particular the FRB energy requirements, the observed energy distribution, the frequency range and the burst duration. Our model allows us to propose additional tests which future data will be able to challenge.
We study the new mechanism of the axion production suggested recently in [1,2]. This mechanism is based on the so-called Axion Quark Nugget (AQN) dark matter model, which was originally invented to explain the similarity of the dark and visible cosmo
The Murchison Widefield Array (MWA) recorded cite{Mondal-2020} impulsive radio events in the quiet solar corona at frequencies 98, 120, 132, and 160 MHz. We propose that these radio events are the direct manifestation of dark matter annihilation even
In this work we advocate for the idea that two seemingly unrelated 80-year-old mysteries - the nature of dark matter and the high temperature of the million degree solar corona - may have resolutions that lie within the same physical framework. The c
The XMM-Newton observatory shows evidence with an $11 sigma$ confidence level for seasonal variation of the X-ray background in the near-Earth environment in the 2-6 keV energy range (Fraser et al. 2014). The interpretation of the seasonal variation
A network of synchronized detectors can increase the likelihood of discovering the QCD axion, within the Axion Quark Nugget (AQN) dark matter model. A similar network can also discriminate the X-rays emitted by the AQNs from the background signal. Th