ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying bright variable stars with the Multi-site All-Sky CAmeRA (MASCARA)

66   0   0.0 ( 0 )
 نشر من قبل Olivier Burggraaff
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Multi-site All-Sky CAmeRA (MASCARA) aims to find the brightest transiting planet systems by monitoring the full sky at magnitudes $4<V<8.4$, taking data every 6.4 seconds. The northern station has been operational on La Palma since February 2015. These data can also be used for other scientific purposes, such as the study of variable stars. In this paper we aim to assess the value of MASCARA data for studying variable stars by determining to what extent known variable stars can be recovered and characterised, and how well new, unknown variables can be discovered. We used the first 14 months of MASCARA data, consisting of the light curves of 53 401 stars with up to one million flux points per object. All stars were cross-matched with the VSX catalogue to identify known variables. The MASCARA light curves were searched for periodic flux variability using generalised Lomb-Scargle periodograms. If significant variability of a known variable was detected, the found period and amplitude were compared with those listed in the VSX database. If no previous record of variability was found, the data were phase folded to attempt a classification. Of the 1919 known variable stars in the MASCARA sample with periods $0.1<P<10$ days, amplitudes $>2%$, and that have more than 80 hours of data, $93.5%$ are recovered. In addition, the periods of $210$ stars without a previous VSX record were determined, and $282$ candidate variable stars were newly identified. The OConnell effect is seen in seven eclipsing binaries, of which two have no previous record of this effect. MASCARA data are very well suited to study known variable stars. They also serve as a powerful means to find new variables among the brightest stars in the sky. Follow-up is required to ensure that the observed variability does not originate from faint background objects.

قيم البحث

اقرأ أيضاً

This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, $4 < m_V < 8$, by monitoring the full sky. MASCARA consists of one northern s tation on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for ${sim}70,000$ stars down to $m_V=8.4$, with a precision of $1.5%$ per 5 minutes at $m_V=8$.
The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been in stalled, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.
The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological stud ies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical, and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterisation of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.
Besides monitoring the bright star $beta$ Pic during the near transit event for its giant exoplanet, the $beta$ Pictoris b Ring (bRing) observatories at Siding Springs Observatory, Australia and Sutherland, South Africa have monitored the brightnesse s of bright stars ($V$ $simeq$ 4--8 mag) centered on the south celestial pole ($delta$ $leq$ -30$^{circ}$) for approximately two years. Here we present a comprehensive study of the bRing time series photometry for bright southern stars monitored between 2017 June and 2019 January. Of the 16762 stars monitored by bRing, 353 of them were found to be variable. Of the variable stars, 80% had previously known variability and 20% were new variables. Each of the new variables was classified, including 3 new eclipsing binaries (HD 77669, HD 142049, HD 155781), 26 $delta$ Scutis, 4 slowly pulsating B stars, and others. This survey also reclassified four stars based on their period of pulsation, light curve, spectral classification, and color-magnitude information. The survey data were searched for new examples of transiting circumsecondary disk systems, but no candidates were found.
CONTEXT: Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance and chemical composition. AIMS: To improve our comprehension of the beta Cep stars, we studied the young open cluster NGC 884 to discover new B-type pulsators, besides the two known beta Cep stars, and other variable stars. METHODS: An extensive multi-site campaign was set up to gather accurate CCD photometry time series in four filters (U, B, V, I) of a field of NGC884. Fifteen different instruments collected almost 77500 CCD images in 1286 hours. The images were calibrated and reduced to transform the CCD frames into interpretable differential light curves. Various variability indicators and frequency analyses were applied to detect variable stars in the field. Absolute photometry was taken to deduce some general cluster and stellar properties. RESULTS: We achieved an accuracy for the brightest stars of 5.7 mmag in V, 6.9 mmag in B, 5.0 mmag in I and 5.3 mmag in U. The noise level in the amplitude spectra is 50 micromag in the V band. Our campaign confirms the previously known pulsators, and we report more than one hundred new multi- and mono-periodic B-, A- and F-type stars. Their interpretation in terms of classical instability domains is not straightforward, pointing to imperfections in theoretical instability computations. In addition, we have discovered six new eclipsing binaries and four candidates as well as other irregular variable stars in the observed field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا