ﻻ يوجد ملخص باللغة العربية
The PandaX-4T experiment, a four-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1 to 10 keV electron equivalent energy, the total electron recoil background is found to be 4.9x10^{-5} /(kg day keV). The nuclear recoil background in the same region is 2.8x10^{-7}/(kg day keV). With an exposure of 5.6 ton-years, the sensitivity of PandaX-4T could reach a minimum spin-independent dark matter-nucleon cross section of 6x10^{-48} cm^{2} at a dark matter mass of 40 GeV/c^{2}.
We report the first dark matter search results using the commissioning data from PandaX-4T. Using a time projection chamber with 3.7-tonne of liquid xenon target and an exposure of 0.63~tonne$cdot$year, 1058 candidate events are identified within an
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress rad
PandaX-4T is a dark matter direct detection experiment located in China jinping underground laboratory. The central apparatus is a dual-phase xenon detector containing 4 ton liquid xenon in the sensitive volume, with about 500 photomultipliers instru
PandaX is a large upgradable liquid-xenon detector system that can be used for both direct dark-matter detection and $^{136}$Xe double-beta decay search. It is located in the Jinping Deep-Underground Laboratory in Sichuan, China. The detector operate
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT t