ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass and age of the first SONG target: the red giant 46 LMi

97   0   0.0 ( 0 )
 نشر من قبل Soeren Frandsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with highprecision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for redgiant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 +- 0.04Msun, R = 7.95 +- 0.11 Rsun, age t = 8.2 +- 1.9Gy, and log g = 2.674 +- 0.013.



قيم البحث

اقرأ أيضاً

The location of Galactic Globular Clusters (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the first parameter, but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the c oexistence of multiple stellar populations with different helium content, and the presence of a second parameter which produces dramatic differences in HB morphology of GCs of similar metallicity and ages (like the pair M3--M13). In this work, we combine the entire dataset from the Hubble Space Telescope Treasury survey and stellar evolutionary models, to analyse the HBs of 46 GCs. For the first time in a large sample of GCs, we generate population synthesis models, where the helium abundances for the first and the extreme second generations are constrained using independent measurements based on RGB stars. The main results are: 1) the mass loss of first generation stars is tightly correlated to cluster metallicity. 2) the location of helium enriched stars on the HB is reproduced only by adopting a higher RGB mass loss than for the first generation. The difference in mass loss correlates with helium enhancement and cluster mass. 3) A model of pre-main sequence disc early loss, previously developed by the authors, explains such a mass loss increase and is consistent with the findings of multiple-population formation models predicting that populations more enhanced in helium tend to form with higher stellar densities and concentrations. 4) Helium-enhancement and mass-loss both contribute to the second parameter.
Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asterosei smic parameters deduced from emph{Kepler} photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is $sim$,20 per cent. The sample stars reveal two separate sequences in the age -- [$alpha$/Fe] relation -- a high--$alpha$ sequence with stars older than $sim$,8,Gyr and a low--$alpha$ sequence composed of stars with ages ranging from younger than 1,Gyr to older than 11,Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of $sim$,24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.
Binaries in double-lined spectroscopic systems provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differe nces are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. In this work, we aim to study the eccentric binary system KIC9163796, whose two components are very close in mass and both are low-luminosity red-giant stars from four years of Kepler space photometry and high-resolution spectroscopy with Hermes. Mass and radius of the primary were determined through asteroseismology to be 1.39+/-0.06 Mo and 5.35+/-0.09 Ro, resp. From spectral disentangling the mass ratio was found to be 1.015+/-0.005 and that the secondary is ~600K hotter than the primary. Evolutionary models place both components, in the early and advanced stage of the first dredge-up event on the red-giant branch. From theoretical models of the primary, we derived the internal rotational gradient. From a grid of models, the measured difference in lithium abundance is compared with theoretical predictions. The surface rotation of the primary is determined from the Kepler light curve and resembles the orbital period within 10 days. The radial rotational gradient between the surface and core is found to be 6.9+2.0/-1.0. The agreement between the surface rotation with the seismic result indicates that the full convective envelope is rotating quasi-rigidly. The models of the lithium abundance are compatible with a rigid rotation in the radiative zone during the main sequence. Because of the many constraints offered by oscillating stars in binary systems, such objects are important test beds of stellar evolution.
Owing to their simplicity and ease of application, seismic scaling relations are widely used to determine the properties of stars exhibiting solar-like oscillations, such as solar twins and red giants. So far, no seismic scaling relations for determi ning the ages of red giant stars have been developed. Such relations would be desirable for galactic archaeology, which uses stellar ages to map the history of the Milky Way. The ages of red giants must instead be estimated with reference to grids of theoretical stellar models, which can be computationally intensive. Here I present an exhaustive search for scaling age relations involving different combinations of observable quantities. The candidate scaling relations are calibrated and tested using more than 1,000 red giant stars whose ages were obtained via grid-based modeling. I report multiple high-quality scaling relations for red giant branch stars, the best of which are shown to be approximately as accurate as grid-based modeling with typical uncertainties of 15%. Additionally, I present new scaling mass and radius relations for red giants as well.
The evolution of low-mass stars into red giants is still poorly understood. During this evolution the core of the star contracts and, simultaneously, the envelope expands -- a process known as the `mirror. Additionally, there is a short phase where t he trend for increasing luminosity is reversed. This is known as the red-giant-branch bump. We explore the underlying physical reasons for these two phenomena by considering the specific entropy distribution in the star and its temporal changes. We find that between the luminosity maximum and luminosity minimum of the bump there is no mirror present and the star is fully contracting. The contraction is halted and the star regains its mirror when the hydrogen-burning shell reaches the mean molecular weight discontinuity. This marks the luminosity minimum of the bump.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا