ﻻ يوجد ملخص باللغة العربية
A plethora of spaces in Functional Analysis (Braun-Meise-Taylor and Carleman ultradifferentiable and ultraholomorphic classes; Orlicz, Besov, Lipschitz, Lebesque spaces, to cite the main ones) are defined by means of a weighted structure, obtained from a weight function or sequence subject to standard conditions entailing desirable properties (algebraic closure, stability under operators, interpolation, etc.) for the corresponding spaces. The aim of this paper is to stress or reveal the true nature of these diverse conditions imposed on weights, appearing in a scattered and disconnected way in the literature: they turn out to fall into the framework of O-regular variation, and many of them are equivalent formulations of one and the same feature. Moreover, we study several indices of regularity/growth for both functions and sequences, which allow for the rephrasing of qualitative properties in terms of quantitative statements.
We characterize the equality between ultradifferentiable function classes defined in terms of abstractly given weight matrices and in terms of the corresponding matrix of associated weight functions by using new growth indices. These indices, defined
We prove an extension theorem for ultraholomorphic classes defined by so-called Braun-Meise-Taylor weight functions and transfer the proofs from the single weight sequence case from V. Thilliez [28] to the weight function setting. We are following a
This paper is dedicated to triangulated categories endowed with weight structures (a new notion; D. Pauksztello has independently introduced them as co-t-structures). This axiomatizes the properties of stupid truncations of complexes in $K(B)$. We al
In this article, we treat stability conditions in the sense of King, Bridgeland and Bayer in a single framework. Following King, we begin with weight functions on a triangulated category, and consider increasingly specialised configurations of triang
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weigh