ﻻ يوجد ملخص باللغة العربية
A study of 3D pixel sensors of cell size 50 {mu}m x 50 {mu}m fabricated at IMB-CNM using double-sided n-on-p 3D technology is presented. Sensors were bump-bonded to the ROC4SENS readout chip. For the first time in such a small-pitch hybrid assembly, the sensor response to ionizing radiation in a test beam of 5.6 GeV electrons was studied. Results for non-irradiated sensors are presented, including efficiency, charge sharing, signal-to-noise, and resolution for different incidence angles.
A silicon 3D detector with a single cell of 50x50 um2 was produced and evaluated for timing applications. The measurements of time resolution were performed for 90Sr electrons with dedicated electronics used also for determining time resolution of Lo
Depleted Monolithic Active Pixel Sensor (DMAPS) prototypes developed in the TowerJazz 180 nm CMOS imaging process have been designed in the context of the ATLAS upgrade Phase-II at the HL-LHC. The pixel sensors are characterized by a small collection
A new generation of 3D silicon pixel detectors with a small pixel size of 50$times$50 and 25$times$100 $mu$m$^{2}$ is being developed for the HL-LHC tracker upgrades. The radiation hardness of such detectors was studied in beam tests after irradiatio
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrument
In this paper we discuss the measurement of charge collection in irradiated silicon pixel sensors and the comparison with a detailed simulation. The simulation implements a model of radiation damage by including two defect levels with opposite charge