ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-particle spectral function for disordered s-wave superconductors: local maps and collective modes

182   0   0.0 ( 0 )
 نشر من قبل Abhisek Samanta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We make the first testable predictions for the local two-particle spectral function of a disordered s-wave superconductor, probed by scanning Josephson spectroscopy (sjs), providing complementary information to scanning tunneling spectroscopy (sts). We show that sjs provides a direct map of the local superconducting order parameter that is found to be anticorrelated with the gap map obtained by sts. Furthermore, this anticorrelation increases with disorder. For the momentum resolved spectral function, we find the Higgs mode shows a non-dispersive subgap feature at low momenta, spectrally separated from phase modes, for all disorder strengths. The amplitude-phase mixing remains small at low momenta even when disorder is large. Remarkably, even for large disorder and high momenta, the amplitude-phase mixing oscillates rapidly in frequency and hence do not affect significantly the purity of the Higgs and phase dominated response functions.

قيم البحث

اقرأ أيضاً

We investigate the effect of thermal fluctuations on the two-particle spectral function for a disordered $s$-wave superconductor in two dimensions, focusing on the evolution of the collective amplitude and phase modes. We find three main effects of t hermal fluctuations: (a) the phase mode is softened with increasing temperature reflecting the decrease of superfluid stiffness; (b) remarkably, the non-dispersive collective amplitude modes at finite energy near ${bf q}=[0,0]$ and ${bf q}=[pi,pi]$ survive even in presence of thermal fluctuations in the disordered superconductor; and (c) the scattering of the thermally excited fermionic quasiparticles leads to low energy incoherent spectral weight that forms a strongly momentum-dependent background halo around the phase and amplitude collective modes and broadens them. Due to momentum and energy conservation constraints, this halo has a boundary which disperses linearly at low momenta and shows a strong dip near the $[pi,pi]$ point in the Brillouin zone.
We study the thermal conductivity in disordered $s$-wave superconductors. Expanding on previous works for normal metals, we develop a formalism that tackles particle diffusion as well as the weak localization (WL) and weak anti-localization (WAL) eff ects. Using a Greens functions diagrammatic technique, which takes into account the superconducting nature of the system by working in Nambu space, we identify the systems low-energy modes, the diffuson and the Cooperon. The time scales that characterize the diffusive regime are energy dependent; this is in contrast with the the normal state, where the relevant time scale is the mean free time $tau_e$, independent of energy. The energy dependence introduces a novel energy scale $varepsilon_*$, which in disordered superconductors ($tau_e Deltall 1$, with $Delta$ the gap) is given by $varepsilon_* = sqrt{Delta/tau_e}$. From the diffusive behavior of the low-energy modes, we obtain the WL correction to the thermal conductivity. We give explicitly expressions in two dimensions. We determine the regimes in which the correction depends explicitly on $varepsilon_*$ and propose an optimal regime to verify our results in an experiment.
We study suppression of superconductivity by disorder in d-wave superconductors, and predict the existence of (at least) two sequential low temperature transitions as a function of increasing disorder: a d -wave to -wave, and then an s-wave to metal transition. This is a universal property of the system which is independent of the sign of the interaction constant in the s-channel
Isolated islands in two-dimensional strongly-disordered and strongly-coupled superconductors become optically active inducing sub-gap collective excitations in the ac conductivity. Here, we investigate the fate of these excitations as a function of t he disorder strength in the experimentally relevant case of weak electron-phonon coupling. An explicit calculation of the ac conductivity, that includes vertex corrections to restore gauge symmetry, reveals the existence of collective sub-gap excitations, related to phase fluctuations and therefore identified as the Goldstone modes, for intermediate to strong disorder. As disorder increases, the shape of the sub-gap excitation transits from peaked close to the spectral gap to a broader distribution reaching much smaller frequencies. Phase-coherence still holds in part of this disorder regime. The requirement to observe sub-gap excitations is not the existence of isolated islands acting as nano-antennas but rather the combination of a sufficiently inhomogeneous order parameter with a phase fluctuation correlation length smaller than the system size. Our results indicate that, by tuning disorder, the Goldstone mode may be observed experimentally in metallic superconductors based for instance on Al, Sn, Pb or Nb.
We investigate the quantum phase transitions of a disordered nanowire from superconducting to metallic behavior by employing extensive Monte Carlo simulations. To this end, we map the quantum action onto a (1+1)-dimensional classical XY model with lo ng-range interactions in imaginary time. We then analyze the finite-size scaling behavior of the order parameter susceptibility, the correlation time, the superfluid density, and the compressibility. We find strong numerical evidence for the critical behavior to be of infinite-randomness type and to belong to the random transverse-field Ising universality class, as predicted by a recent strong disorder renormalization group calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا