ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and electronic structure of the layered rare-earth pnictide EuCd$_2$Sb$_2$

382   0   0.0 ( 0 )
 نشر من قبل Jian Rui Soh
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant elastic X-ray scattering (REXS) at the Eu $M_5$ edge reveals an antiferromagnetic structure in layered EuCd$_2$Sb$_2$ at temperatures below $T_textrm{N}$ = 7.4 K with a magnetic propagation vector of $(0,0,1/2)$ and spins in the basal plane. Magneto-transport and REXS measurements with an in-plane magnetic field show that features in the magnetoresistance are correlated with changes in the magnetic structure induced by the field. Ab initio electronic structure calculations predict that the observed spin structure gives rise to a gapped Dirac point close to the Fermi level with a gap of $Delta E sim$0.01 eV. The results of this study indicate that the Eu spins are coupled to conduction electron states near the Dirac point.

قيم البحث

اقرأ أيضاً

We have investigated the magnetic correlations in the candidate Weyl semimetals EuCd$_2Pn_2$, ($Pn$=As, Sb) by resonant elastic X-ray scattering (REXS) at the Eu$^{2+}$ $M_5$ edge. The temperature and field dependence of the diffuse scattering of EuC d$_2$As$_2$ provide direct evidence that the Eu moments exhibit slow ferromagnetic correlations well above the N{e}el temperature. By contrast, the diffuse scattering in the paramagnetic phase of isostructural EuCd$_2$Sb$_2$ is at least an order of magnitude weaker. The FM correlations present in the paramagnetic phase of EuCd$_2$As$_2$ could create short-lived Weyl nodes.
We use resonant elastic x-ray scattering to determine the evolution of magnetic order in EuCd$_2$As$_2$ below $T_textrm{N}=9.5$,K, as a function of temperature and applied magnetic field. We find an A-type antiferromagneticstructure with in-plane mag netic moments, and observe dramatic magnetoresistive effects associated with field-induced changes in the magnetic structure and domain populations. Our textit{ab initio} electronic structure calculations indicate that the Dirac dispersion found in the nonmagnetic Dirac semimetal Cd$_3$As$_2$ is also present in EuCd$_2$As$_2$, but is gapped for $T < T_textrm{N}$ due to the breaking of $C_3$ symmetry by the magnetic structure.
The antiferromagnetic (AFM) semimetal YbMnSb$_2$ has recently been identified as a candidate topological material, driven by time-reversal symmetry breaking. Depending on the ordered arrangement of Mn spins below the N{e}el temperature, $T_mathrm{N}$ = 345 K, the electronic bands near the Fermi energy can ether have a Dirac node, a Weyl node or a nodal line. We have investigated the ground state magnetic structure of YbMnSb$_2$ using unpolarized and polarized single crystal neutron diffraction. We find that the Mn moments lie along the $c$ axis of the $P4/nmm$ space group and are arranged in a C-type AFM structure, which implies the existence of gapped Dirac nodes near the Fermi level. The results highlight how different magnetic structures can critically affect the topological nature of fermions in semimetals.
We report an experimental study of the magnetic order and electronic structure and transport of the layered pnictide EuMnSb$_2$, performed using neutron diffraction, angle-resolved photoemission spectroscopy (ARPES), and magnetotransport measurements . We find that the Eu and Mn sublattices display antiferromagnetic (AFM) order below $T_mathrm{N}^mathrm{Eu} = 21(1)$ K and $T_mathrm{N}^mathrm{Mn} = 350(2)$ K respectively. The former can be described by an A-type AFM structure with the Eu spins aligned along the $c$ axis (an in-plane direction), whereas the latter has a C-type AFM structure with Mn moments along the $a$--axis (perpendicular to the layers). The ARPES spectra reveal Dirac-like linearly dispersing bands near the Fermi energy. Furthermore, our magnetotransport measurements show strongly anisotropic magnetoresistance, and indicate that the Eu sublattice is intimately coupled to conduction electron states near the Dirac point.
142 - Y. Xu , L. Das , J. Z. Ma 2020
As exemplified by the growing interest in the quantum anomalous Hall effect, the research on topology as an organizing principle of quantum matter is greatly enriched from the interplay with magnetism. In this vein, we present a combined electrical a nd thermoelectrical transport study on the magnetic Weyl semimetal EuCd$_2$As$_2$. Unconventional contribution to the anomalous Hall and anomalous Nernst effects were observed both above and below the magnetic transition temperature of EuCd$_2$As$_2$, indicating the existence of significant Berry curvature. EuCd$_2$As$_2$ represents a rare case in which this unconventional transverse transport emerges both above and below the magnetic transition temperature in the same material. The transport properties evolve with temperature and field in the antiferromagnetic phase in a different manner than in the paramagnetic phase, suggesting different mechanisms to their origin. Our results indicate EuCd$_2$As$_2$ is a fertile playground for investigating the interplay between magnetism and topology, and potentially a plethora of topologically nontrivial phases rooted in this interplay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا