ﻻ يوجد ملخص باللغة العربية
We demonstrate the dragging of the magnetic field by the super-Alfvenic shear flows out of the reconnection plane can strongly localize the reconnection x-line in collisionless plasmas, reversing the current direction at the x-line. Reconnection with this new morphology, which is impossible in resistive-magnetohydrodynamic (MHD), is enabled by electron inertia. Surprisingly, the quasi-steady reconnection rate remains of order 0.1 even though the aspect ratio of the local x-line geometry is larger than unity. We explain this by examining the transport of the reconnected magnetic flux and the opening angle made by the upstream magnetic field, concluding that the reconnection rate is still limited by the constraint imposed at the inflow region. This study further suggests the nearly universal fast rate value of order 0.1 cannot be explained by the physics of tearing modes, nor can it be explained by a universal localization mechanism.
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnec
Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohy
This work presents a magnetic reconnection experiment in which the kinetic, magnetic and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnecti
The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are ident
The outflow velocity of jets produced by collisionless magnetic reconnection is shown to be reduced by the ion exhaust temperature in simulations and observations. We derive a scaling relationship for the outflow velocity based on the upstream Alfven