ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of dredge-up in double white dwarf mergers

132   0   0.0 ( 0 )
 نشر من قبل Jan Staff
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of an investigation of the dredge-up and mixing during the merger of two white dwarfs with different chemical compositions by conducting hydrodynamic simulations of binary mergers for three representative mass ratios. In all the simulations, the total mass of the two white dwarfs is $lesssim1.0~{rm M_odot}$. Mergers involving a CO and a He white dwarf have been suggested as a possible formation channel for R Coronae Borealis type stars, and we are interested in testing if such mergers lead to conditions and outcomes in agreement with observations. Even if the conditions during the merger and subsequent nucleosynthesis favor the production of $^{18}{mathrm O}$, the merger must avoid dredging up large amounts of $^{16}{mathrm O}$, or else it will be difficult to produce sufficient $^{18}{mathrm O}$ to explain the oxygen ratio observed to be of order unity. We performed a total of 9 simulations using two different grid-based hydrodynamics codes using fixed and adaptive meshes, and one smooth particle hydrodynamics (SPH) code. We find that in most of the simulations, $>10^{-2}~{rm M_odot}$ of $^{16}{mathrm O}$ is indeed dredged up during the merger. However, in SPH simulations where the accretor is a hybrid He/CO white dwarf with a $sim 0.1~{rm M_odot}$ layer of helium on top, we find that no $^{16}{mathrm O}$ is being dredged up, while in the $q=0.8$ simulation $<10^{-4}~{rm M_odot}$ of $^{16}{mathrm O}$ has been brought up, making a WD binary consisting of a hybrid CO/He WD and a companion He WD an excellent candidate for the progenitor of RCB stars.

قيم البحث

اقرأ أيضاً

A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WD) in a binary. The observed ratio of 16O/18O for RCB stars is in the range of 0.3-20 much smaller than the solar value of ~500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He white dwarf. We present the results of five 3-dimensional hydrodynamic simulations of the merger of a double white dwarf system where the total mass is 0.9 Mdot and the initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with $qlesssim0.7$ a feature around the merged stars where the temperatures and densities are suitable for forming 18O. However, more 16O is being dredged-up from the C- and O-rich accretor during the merger than the amount of 18O that is produced. Therefore, on a dynamical time scale over which our hydrodynamics simulation runs, a 16O/18O ratio of ~2000 in the best case is found. If the conditions found in the hydrodynamic simulations persist for 10^6 seconds the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to ~4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two white dwarfs remains a strong candidate for the formation of these enigmatic stars.
96 - B. Rolland , P. Bergeron , 2020
We revisit the problem of the formation of DB white dwarfs, as well as the origin of hydrogen in DBA stars, using a new set of envelope model calculations with stratified and mixed hydrogen/helium compositions. We first describe an approximate model to simulate the so-called convective dilution process, where a thin, superficial hydrogen radiative layer is gradually eroded by the underlying and more massive convective helium envelope, thus transforming a DA white dwarf into a DB star. We show that this convective dilution process is able to account for the large increase in the number of DB white dwarfs below Teff ~ 20,000 K, but that the residual hydrogen abundances expected from this process are still orders of magnitude lower than those observed in DBA white dwarfs. Scenarios involving the accretion of hydrogen from the interstellar medium or other external bodies have often been invoked to explain these overabundances of hydrogen. In this paper, we describe a new paradigm where hydrogen, initially diluted within the thick stellar envelope, is still present and slowly diffusing upward in the deeper layers of a Teff ~ 20,000 K white dwarf. When the convective dilution process occurs, the bottom of the mixed H/He convection zone sinks deep into the star, resulting in large amounts of hydrogen being dredged-up to the stellar surface, a phenomenon similar to that invoked in the context of DQ white dwarfs.
129 - Dongdong Liu , Bo Wang 2020
The merging of double white dwarfs (WDs) may produce the events of accretion-induced collapse (AIC) and form single neutron stars (NSs). Meanwhile, it is also notable that the recently proposed WD+He subgiant scenario has a significant contribution t o the production of massive double WDs, in which the primary WD grows in mass by accreting He-rich material from a He subgiant companion. In this work, we aim to study the binary population synthesis (BPS) properties of AIC events from the double WD mergers by considering the classical scenarios and also the contribution of theWD+He subgiant scenario to the formation of double WDs. First, we provided a dense and large model grid of WD+He star systems for producing AIC events through the double WD merger scenario. Secondly, we performed several sets of BPS calculations to obtain the rates and single NS number in our Galaxy. We found that the rates of AIC events from the double WD mergers in the Galaxy are in the range of 1.4-8.9*10^-3 yr^-1 for all ONe/CO WD+ONe/CO WD mergers, and in the range of 0.3-3.8*10^-3 yr^-1 when double COWD mergers are not considered.We also found that the number of single NSs from AIC events in our Galaxy may range from 0.328*10^7 to 1.072*10^8. The chirp mass of double WDs for producing AIC events distribute in the range of 0.55-1.25 Msun. We estimated that more than half of doubleWDs for producing AIC events are capable to be observed by the future space-based gravitational wave detectors.
167 - Warren R. Brown 2017
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 min, respectively. The 40 min system is eclipsing; it is composed of a 0.30 Msun an d a 0.52 Msun WD. The 46 min system is a likely LISA verification binary. The short 20 Myr and ~34 Myr gravitational wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM~CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger as proposed by Shen.
306 - D. Fenn , T. Plewa , 2016
We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a co-rotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multi-grid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here the detonation occurs in the primarys core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy ($1.6times 10^{51}$ erg) and $^{56}$Ni mass (0.86 M$_odot$) are consistent with a SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of $Delta m_{15}(B)approx 0.99$. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M$_odot$ helium secondary and a 0.9 M$_odot$ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primarys core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا