ترغب بنشر مسار تعليمي؟ اضغط هنا

A Proper Motions Study of the Globular Cluster M12 (NGC 6218)

241   0   0.0 ( 0 )
 نشر من قبل Ing-Guey Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using astrometric techniques developed by Anderson et al., we determine proper motions (PMs) in 14.60 arcmin X 16.53 arcmin area of the kinematically thick-disk globular cluster M12. The clusters proximity and sparse nature makes it a suitable target for ground-based telescopes. Archive images with time gap of 11.1 years were observed with wide-field imager (WFI) mosaic camera mounted on ESO 2.2 m telescope. The median value of PM error in both components is 0.7 mas/yr for the stars having V less than or equal to 20 mag. PMs are used to determine membership probabilities and to separate field stars from the cluster sample. In electronic form, a membership catalog of 3725 stars with precise coordinates, PMs, BVRI photometry is being provided. One of the possible applications of the catalog was shown by gathering the membership information of the variable stars, blue stragglers and X-ray sources reported earlier in the clusters region.



قيم البحث

اقرأ أيضاً

With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions ( PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalogue will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is $sim$14.3 years. To standardize the $BVI$ photometry, Stetsons secondary standard stars are used. The CCD data with an epoch gap of $sim$14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than $sim$0.8 mas~yr$^{-1}$ for stars having $V<$18 mag that increases up to $sim$1.5 mas~yr$^{-1}$ for stars with $18<V<20$ mag. Kinematic membership probabilities are calculated using proper motions for stars brighter than $Vsim$20 mag. An electronic catalogue of positions, relative PMs, $BVI$ magnitudes and membership probabilities in $sim$19.7$times$17 arcmin$^2$ region of NGC 3201 is presented. We use our membership catalogue to identify probable cluster members among the known variables and $X$-ray sources in the direction of NGC 3201.
Convergent lines of evidence suggest that globular clusters host multiple stellar populations. It appears that they experience at least two episodes of star formation whereby a fraction of first-generation stars contribute astrated ejecta to form the second generation(s). To identify the polluting progenitors we require distinguishing chemical signatures such as that provided by lithium. Theoretical models predict that lithium can be synthesised in AGB stars, whereas no net Li production is expected from other candidates. It has been shown that in order to reproduce the abundance pattern found in M4, Li production must occur within the polluters, favouring the AGB scenario. Here we present Li and Al abundances for a large sample of RGB stars in M12 and M5. These clusters have a very similar metallicity, whilst demonstrating differences in several cluster properties. Our results indicate that the first-generation and second-generation stars share the same Li content in M12; we recover an abundance pattern similar to that observed in M4. In M5 we find a higher degree of complexity and a simple dilution model fails in reproducing the majority of the stellar population. In both clusters we require Li production across the different stellar generations, but production seems to have occurred to different extents. We suggest that such a difference might be related to the cluster mass with the Li production being more efficient in less-massive clusters. This is the first time a statistically significant correlation between the Li spread within a GC and its luminosity has been demonstrated. Finally, although Li-producing polluters are required to account for the observed pattern, other mechanisms, such as MS depletion, might have played a role in contributing to the Li internal variation, though at relatively low level.
We derive relative proper motions of stars in the fields of globular clusters M4, M12, M22, NGC 3201, NGC 6362 and NGC 6752 based on a uniform data set collected between 1997 and 2008. We assign a membership class for each star with a measured proper motion, and show that these membership classes can be successfully used to eliminate field stars from color-magnitude diagrams of the clusters. They also allow for the efficient selection of rare objects such as blue/yellow/red stragglers and stars from the asymptotic giant branch. Tables with proper motions and photometry of over 87000 stars are made publicly available via the Internet.
We have derived the absolute proper motion (PM) of the globular cluster M55 using a large set of CCD images collected with the du Pont telescope between 1997 and 2008. We find (PM_RA*cos(DEC), PM_DEC) = (-3.31 +/- 0.10, -9.14 +/- 0.15) mas/yr relativ e to background galaxies. Membership status was determined for 16 945 stars with 14<V<21 from the central part of the cluster. The PM catalogue includes 52 variables of which 43 are probable members of M55. This sample is dominated by pulsating blue straggler stars but also includes 5 eclipsing binaries, three of which are main sequence objects. The survey also identified several candidate blue, yellow and red straggler stars belonging to the cluster. We detected 15 likely members of the Sgr dSph galaxy located behind M55. The average PM for these stars was measured to be (PM_RA*cos(DEC), PM_DEC)=(-2.23 +/- 0.14, -1.83 +/- 0.24) mas/yr.
Aims: for the first time the astrometric capabilities of the Multi-Conjugate Adaptive Optics (MCAO) facility GeMS with the GSAOI camera on Gemini-South are tested to quantify the accuracy in determining stellar proper motions in the Galactic globular cluster NGC 6681. Methods: proper motions from HST/ACS for a sample of its stars are already available, and this allows us to construct a distortion-free reference at the epoch of GeMS observations that is used to measure and correct the temporally changing distortions for each GeMS exposure. In this way, we are able to compare the corrected GeMS images with a first-epoch of HST/ACS images to recover the relative proper motion of the Sagittarius dwarf spheroidal galaxy with respect to NGC 6681. Results: we find this to be (mu_{alpha}cosdelta, mu_{delta}) = (4.09,-3.41) mas/yr, which matches previous HST/ACS measurements with a very good accuracy of 0.03 mas/yr and with a comparable precision (r.m.s of 0.43 mas/yr). Conclusions: this study successfully demonstrates that high-quality proper motions can be measured for quite large fields of view (85 arcsec X 85 arcsec) with MCAO-assisted, ground-based cameras and provides a first, successful test of the performances of GeMS on multi-epoch data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا