ترغب بنشر مسار تعليمي؟ اضغط هنا

Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity

77   0   0.0 ( 0 )
 نشر من قبل Chee Fai Fong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light with nonzero orbital angular momentum (OAM) or twisted light is promising for quantum communication applications such as OAM-entangled photonic qubits. There exist photonic OAM to photonic spin angular momentum (SAM), as well as photonic SAM to electronic SAM interfaces but not any direct photonic OAM-electronic SAM (flying to stationary) media converter within a single device. Here, we propose a scheme which converts photonic OAM to electronic SAM and vice versa within a single nanophotonic device. We employed a photonic crystal nanocavity with an embedded quantum dot (QD) which confines an electron spin as a stationary qubit. Spin polarized emission from the QD drive the rotation of the nanocavity modes via the strong optical spin-orbit interaction. The rotating modes then radiate light with nonzero OAM, allowing this device to serve as a transmitter. As this can be a unitary process, the time-reversed case enables the device to function as a receiver. This scheme could be generalized to other systems of resonator and quantum emitters such as a microdisk and defects in diamond for example. Our scheme shows the potential for realizing an (ultra)compact electronic SAM-photonic OAM interface to accommodate OAM as an additional degree of freedom for quantum information purposes.



قيم البحث

اقرأ أيضاً

Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action with applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In this endeavor, here we demonstrate the implementation of a quantum memory for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks exploring the promises of orbital angular momentum of photons for quantum information applications.
We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems, the transverse electric - transverse magnetic (TE-TM) polarizat ion splitting featured by semiconductor microcavities allows for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The process implies the formation of topological entities, a pair of optical half-vortices, in the intracavity field.
Pseudospin, an additional degree of freedom inherent in graphene, plays a key role in understanding many fundamental phenomena such as the anomalous quantum Hall effect, electron chirality and Klein paradox. Unlike the electron spin, the pseudospin w as traditionally considered as an unmeasurable quantity, immune to Stern-Gerlach-type experiments. Recently, however, it has been suggested that graphene pseudospin is a real angular momentum that might manifest itself as an observable quantity, but so far direct tests of such a momentum remained unfruitful. Here, by selective excitation of two sublattices of an artificial photonic graphene, we demonstrate pseudospin-mediated vortex generation and topological charge flipping in otherwise uniform optical beams with Bloch momentum traversing through the Dirac points. Corroborated by numerical solutions of the linear massless Dirac-Weyl equation, we show that pseudospin can turn into orbital angular momentum completely, thus upholding the belief that pseudospin is not merely for theoretical elegance but rather physically measurable.
Vortices are whirling disturbances commonly found in nature ranging from tremendously small scales in Bose-Einstein condensates to cosmologically colossal scales in spiral galaxies. An optical vortex, generally associated with a spiral phase, can car ry orbital angular momentum (OAM). The optical OAM can either be in the longitudinal direction if the spiral phase twists in the spatial domain or in the transverse direction if the phase rotates in the spatiotemporal domain. In this article, we demonstrate the intersection of spatiotemporal vortices and spatial vortices in a wave packet. As a result of this intersection, the wave packet hosts a tilted OAM that provides an additional degree of freedom to the applications that harness the OAM of photons.
In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single photon to its polarization. Such transfer of quantum information, completely reversible, has been imple mented adopting a electrically tunable q-plate device and a Sagnac interferomenter with a Doves prism. The adopted scheme exhibits a high fidelity and low losses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا