ﻻ يوجد ملخص باللغة العربية
Though considerable effort has been devoted to exploiting generation-side and demand-side operational flexibility in order to cope with uncertain renewable generations, grid-side operational flexibility has not been fully investigated. In this review, we define grid-side flexibility as the ability of a power network to deploy its flexibility resources to cope with the changes of power system state, particularly due to variation of renewable generation. Starting with a survey on the metrics of operational flexibility, we explain the definition from both physical and mathematical point of views. Then conceptual examples are presented to demonstrate the impacts of grid-side flexibility graphically, providing a geometric interpretation for a better understanding of the concepts. Afterwards the formulations and solution approaches in terms of grid-side flexibility in power system operation and planning are reviewed, based on which future research directions and challenges are outlined.
Battery storage is expected to play a crucial role in the low-carbon transformation of energy systems. The deployment of battery storage in the power gird, however, is currently severely limited by its low economic viability, which results from not o
Flexible load at the demand-side has been regarded as an effective measure to cope with volatile distributed renewable generations. To unlock the demand-side flexibility, this paper proposes a peer-to-peer energy sharing mechanism that facilitates en
This paper addresses the distributed frequency control problem in a multi-area power system taking into account of unknown time-varying power imbalance. Particularly, fast controllable loads are utilized to restore system frequency under changing pow
The mushrooming of distributed energy resources turns end-users from passive price-takers to active market participants. To manage those massive proactive end-users efficiently, virtual power plant (VPP) as an innovative concept emerges. It can provi
In this letter we propose a generalized branch model to be used in DC optimal power flow (DCOPF) applications. Besides AC lines and transformers, the formulation allows for representing variable susceptance branches, phase shifting transformers, HVDC