ﻻ يوجد ملخص باللغة العربية
To meet the requirements of high energy efficiency (EE) and large system capacity for the fifth-generation (5G) Internet of Things (IoT), the use of massive multiple-input multipleoutput (MIMO) technology has been launched in the massive IoT (mIoT) network, where a large number of devices are connected and scheduled simultaneously. This paper considers the energyefficient design of a multi-pair decode-and-forward relay-based IoT network, in which multiple sources simultaneously transmit their information to the corresponding destinations via a relay equipped with a large array. In order to obtain an accurate yet tractable expression of the EE, firstly, a closed-form expression of the EE is derived under an idealized simplifying assumption, in which the location of each device is known by the network. Then, an exact integral-based expression of the EE is derived under the assumption that the devices are randomly scattered following a uniform distribution and transmit power of the relay is equally shared among the destination devices. Furthermore, a simple yet efficient lower bound of the EE is obtained. Based on this, finally, a low-complexity energy-efficient resource allocation strategy of the mIoT network is proposed under the specific qualityof- service (QoS) constraint. The proposed strategy determines the near-optimal number of relay antennas, the near-optimal transmit power at the relay and near-optimal density of active mIoT device pairs in a given coverage area. Numerical results demonstrate the accuracy of the performance analysis and the efficiency of the proposed algorithms.
A major challenge that is currently faced in the design of applications for the Internet of Things (IoT) concerns with the optimal use of available energy resources given the battery lifetime of the IoT devices. The challenge is derived from the hete
In this paper, we consider a light fidelity (LiFi)-enabled bidirectional Internet of Things (IoT) communication system, where visible light and infrared light are used in the downlink and uplink, respectively. In order to improve the energy efficienc
This paper considers the problem of time-difference-of-arrival (TDOA) source localization using possibly unreliable data collected by the Internet of Things (IoT) sensors in the error-prone environments. The Welsch loss function is integrated into a
Current radio frequency (RF) sensors at the Edge lack the computational resources to support practical, in-situ training for intelligent spectrum monitoring, and sensor data classification in general. We propose a solution via Deep Delay Loop Reservo
In graph signal processing, data samples are associated to vertices on a graph, while edge weights represent similarities between those samples. We propose a convex optimization problem to learn sparse well connected graphs from data. We prove that e