ﻻ يوجد ملخص باللغة العربية
We observed a distinct peak in the $Lambda p$ invariant mass spectrum of $^{3}{rm He}(K^-, , Lambda p)n$, well below the mass threshold of $m_K + 2 m_p$. By selecting a relatively large momentum-transfer region $q = 350 sim 650$ MeV/$c$, one can clearly separate the peak from the quasi-free process, $overline{K}N rightarrow overline{K}N$ followed by the non-resonant absorption by the two spectator-nucleons $overline{K}NN rightarrow Lambda N $. We found that the simplest fit to the observed peak gives us a Breit-Wigner pole position at $B_{rm {it Kpp}} = 47 pm 3 , (stat.) ,^{+3}_{-6} ,(sys.)$ MeV having a width $Gamma_{rm {it Kpp}} = 115 pm 7 , (stat.) ,^{+10}_{-9} ,(sys.)$ MeV, and the $S$-wave Gaussian reaction form-factor parameter $Q_{rm {it Kpp}} = 381 pm 14 , (stat.),^{+57}_{-0} ,(sys.)$ MeV/$c$, as a new form of the nuclear bound system with strangeness -- $K^-pp$.
We have performed an exclusive measurement of the $K^{-}+! ~^{3}{rm He} to Lambda pn$ reaction at an incident kaon momentum of $1 {rm GeV}/c$.In the $Lambda p$ invariant mass spectrum, a clear peak was observed below the mass threshold of $bar{K}!+!N
To search for an S= -1 di-baryonic state which decays to $Lambda p$, the $ {rm{}^3He}(K^-,Lambda p)n_{missing}$ reaction was studied at 1.0 GeV/$c$. Unobserved neutrons were kinematically identified from the missing mass $M_X$ of the $ {rm{}^3He}(K^-
The $Lambda(1405)$ production in p+p collisions at 3.5 GeV and K$^-$-induced reactions is discussed. The shift of the measured spectral function of the $Lambda(1405)$ in p+p reactions does not match either theoretical calculations for p+p reactions o
Polarization properties of strange baryons produced in pp reactions, p + p -> p + Lambda^0 + K^+ and p + p -> p + Sigma^0 + K^$, near thresholds of the final states (p Lambda^0 K^+) and (p Sigma^0 K^+) are analysed relative to polarizations of collid
The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. The large final state enhancement near the Lambda p threshold can be describ