ﻻ يوجد ملخص باللغة العربية
We propose a three dimensional Discontinuous Petrov-Galerkin Maxwell approach for modeling Raman gain in fiber laser amplifiers. In contrast with popular beam propagation models, we are interested in a truly full vectorial approach. We apply the ultraweak DPG formulation, which is known to carry desirable properties for high-frequency wave propagation problems, to the coupled Maxwell signal/pump system and use a nonlinear iterative scheme to account for the Raman gain. This paper also introduces a novel and practical full-vectorial formulation of the electric polarization term for Raman gain that emphasizes the fact that the computer modeler is only given a measured bulk Raman gain coefficient. Our results provide promising qualitative corroboration of the model and methodology used.
We present both modeling and computational advancements to a unique three-dimensional discontinuous Petrov-Galerkin finite element model for the simulation of laser amplification in a fiber amplifier. Our model is based on the time-harmonic Maxwell e
Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated satu
We demonstrate the stabilization of two-dimensional nonlinear wave patterns by means of a dissipative confinement potential. Our analytical and numerical analysis, based on the generalized dissipative Gross-Pitaevskii equation, makes use of the close
Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of fi
We analyze the amplification processes occurring in a nonlinear fiber, either driven with one or two pumps. After determining the solution for the signal and idler fields resulting from these amplification processes, we analyze the physical transform