ﻻ يوجد ملخص باللغة العربية
We show that any language in nondeterministic time $exp(exp(cdots exp(n)))$, where the number of iterated exponentials is an arbitrary function $R(n)$, can be decided by a multiprover interactive proof system with a classical polynomial-time verifier and a constant number of quantum entangled provers, with completeness $1$ and soundness $1 - exp(-Cexp(cdotsexp(n)))$, where the number of iterated exponentials is $R(n)-1$ and $C>0$ is a universal constant. The result was previously known for $R=1$ and $R=2$; we obtain it for any time-constructible function $R$. The result is based on a compression technique for interactive proof systems with entangled provers that significantly simplifies and strengthens a protocol compression result of Ji (STOC17). As a separate consequence of this technique we obtain a different proof of Slofstras recent result (unpublished) on the uncomputability of the entangled value of multiprover games. Finally, we show that even minor improvements to our compression result would yield remarkable consequences in computational complexity theory and the foundations of quantum mechanics: first, it would imply that the class MIP* contains all computable languages; second, it would provide a negative resolution to a multipartite version of Tsirelsons problem on the relation between the commuting operator and tensor product models for quantum correlations.
Quantum computers can sometimes exponentially outperform classical ones, but only for problems with sufficient structure. While it is well known that query problems with full permutation symmetry can have at most polynomial quantum speedup -- even fo
The expected return time to the original state is a key concept characterizing systems obeying both classical or quantum dynamics. We consider iterated open quantum dynamical systems in finite dimensional Hilbert spaces, a broad class of systems that
In this paper we study quantum algorithms for NP-complete problems whose best classical algorithm is an exponential time application of dynamic programming. We introduce the path in the hypercube problem that models many of these dynamic programming
Recently, Bravyi, Gosset, and K{o}nig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but
In function inversion, we are given a function $f: [N] mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data