ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon isolation and jet substructure

109   0   0.0 ( 0 )
 نشر من قبل Eleanor Hall
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce soft drop isolation, a new photon isolation criterion inspired by jet substructure techniques. Soft drop isolation is collinear safe and is equivalent to Frixione isolation at leading non-trivial order in the small R limit. However, soft drop isolation has the interesting feature of being democratic, meaning that photons can be treated equivalently to hadrons for initial jet clustering. Taking advantage of this democratic property, we define an isolated photon subjet: a photon that is not isolated from its parent jet but is isolated within its parent subjet after soft drop declustering. The kinematics of this isolated photon subjet can be used to expose the QED splitting function, in which a quark radiates a photon, and we verify this behavior using both a parton shower generator and a perturbative calculation in the collinear limit.

قيم البحث

اقرأ أيضاً

A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the $D_2$ observable and perform an illustrative case study using a search for a light hadronically decaying $Z$. We find that the CSS approach completely decorrelates the $D_2$ observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.
Top polarization is an important probe of new physics that couples to the top sector, and which may be discovered at the 14 TeV LHC. Taking the example of the MSSM, we argue that top polarization measurements can put a constraint on the soft supersym metry breaking parameter A_t. In light of the recent discovery of a Higgs-like boson of mass ~125 GeV, a large A_t is a prediction of many supersymmetric models. To this end, we develop a *detector level* analysis methodology for extracting polarization information from hadronic tops using boosted jet substructure. We show that with 100 fb^(-1) of data, left and right 600 GeV stops can be distinguished to 4sigma, and 800 GeV stops can be distinguished to 3sigma.
We explicitly study how jet substructure taggers act on a set of signal and background events. We focus on two-pronged hadronic decay of a boosted Z boson. The background to this process comes from QCD jets with masses of the order of m_Z. We find a way to compare various taggers within a single framework by applying them to the most relevant splitting in a jet. We develop a tool, TOY-TAG, which allows one to get insight into what happens when a particular tagger is applied to a set of signal or background events. It also provides estimates for significance and purity. We use our tool to analyze differences between various taggers and potential ways to improve the performance by combining several of them.
The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in a theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag so ft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve a sensitivity in these non-trivial search regions.
Collimated sprays of hadrons, called jets, are an emergent phenomenon of Quantum Chromodynamics (QCD) at collider experiments, whose detailed internal structure encodes valuable information about the interactions of high energy quarks and gluons, and their confinement into color-neutral hadrons. The flow of energy within jets is characterized by correlation functions of energy flow operators, with the three-point correlator, being the first correlator with non-trivial shape dependence, playing a special role in unravelling the dynamics of QCD. In this Letter we initiate a study of the three-point energy correlator to all orders in the strong coupling constant, in the limit where two of the detectors are squeezed together. We show that by rotating the two squeezed detectors with respect to the third by an angle $phi$, a $cos (2phi)$ dependence arising from the quantum interference between intermediate virtual gluons with $+/-$ helicity is imprinted on the detector. This can be regarded as a double slit experiment performed with jet substructure, and it provides a direct probe of the ultimately quantum nature of the substructure of jets, and of transverse spin physics in QCD. To facilitate our all-orders analysis, we adopt the Operator Product Expansion (OPE) for light-ray operators in conformal field theory and develop it in QCD. Our application of the light-ray OPE in real world QCD establishes it as a powerful theoretical tool with broad applications for the study of jet substructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا