ﻻ يوجد ملخص باللغة العربية
Two opposite parity dipole bandlike structures DB I and DB II of $^{142}$Eu are investigated by the Indian National Gamma Array (INGA), using the fusion evaporation reaction $^{31}$P + $^{116}$Cd @ 148 MeV. The decreasing trend as well as magnitude of the measured $B(M1)$ and $B(E2)$ transition rates of the band DB II has been reproduced well within the shears mechanism with the principal axis cranking model calculations. This calculation reflects the fact that the maximum contribution of the angular momentum of the states in DB II has been generated from the magnetic rotation (MR) phenomenon. The enhanced $B(E1)$ rates of the connecting $E1$ transitions from the states of DB II to DB I are demanding the octupole correlation due to the involvement of the octupole driving pair of orbitals $pi{h_{11/2}}$ and $pi{d_{5/2}}$ as evident from the quasiparticle alignment ($i_{x}$), the experimental routhians (e$^{}$) and the calculated neutron and proton quasiparticle energies against the rotational frequency ($omega$).
A comprehensive decay scheme of $^{93}$Nb below 2 MeV has been constructed from information obtained with the $^{93}$Nb(n,n$^prime$$gamma$) and $^{94}$Zr(p,2n$gamma$$gamma$)$^{93}$Nb reactions. Branching ratios, lifetimes, transition multipolarities
We discuss the role of deformation of the target nucleus in the fusion reaction of the $^{15}$C + $^{232}$Th system at energies around the Coulomb barrier, for which $^{15}$C is a well-known one-neutron halo nucleus. To this end, we construct the pot
The structure of the 18O nucleus at excitation energies above the alpha decay threshold was studied using 14C+alpha resonance elastic scattering. A number of states with large alpha reduced widths have been observed, indicating that the alpha-cluster
We report the first direct measurement of differential transfer cross sections using a Recoil Mass Spectrometer. Absolute differential $1p$ and $2p$-stripping cross sections at $theta_mathrm{c.m.}=180^circ$ have been determined for the system $^{16}$
Based on the Hartree-Fock-Bogoliubov solutions in large deformed coordinate spaces, the finite amplitude method for quasiparticle random phase approximation (FAM-QRPA) has been implemented, providing a suitable approach to probe collective excitation