ترغب بنشر مسار تعليمي؟ اضغط هنا

Deuteron production from phase-space coalescence in the UrQMD approach

98   0   0.0 ( 0 )
 نشر من قبل Marcus Bleicher
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

UrQMD phase-space coalescence calculations for the production of deuterons are compared with available data for various reactions from the GSI/FAIR energy regime up to LHC. It is found that the production process of deuterons, as reflected in their rapidity and transverse momentum distributions in p+p, p+A and A+A collisions at a beam energies starting from the GSI energy regime around 1 AGeV and up to the LHC, are in good agreement with experimental data. We further explore the energy and centrality dependence of the d/p ratios. Finally, we discuss anti-deuteron production for selected systems. Overall, a good description of the experimental data is observed. The results are also compatible with thermal model estimates. Most importantly this good description is based only on a single set of coalescence parameters that is independent of energy system size and can also be applied for anti-deuterons.



قيم البحث

اقرأ أيضاً

104 - X. G. Deng , Y. G. Ma 2020
Light nuclei production in relativistic $^{197}$Au + $^{197}$Au collisions from 7.7 to 80 GeV is investigated within the Ultra-relativistic-Quantum-Molecular-Dynamics model (UrQMD) with a naive coalescence approach. The results of the production of l ight nuclei at midrapidity can essentially match up the experimental data and a slight enhancement of combined ratio of ${N_{p}N_{t}}/{N_{d}^{2}}$ where $N_p, N_d$ and $N_t$ represent respectively the yields of proton, deuteron and triton, which is sensitive to the neutron density fluctuations, occurs around 20 GeV. However, this enhanced ${N_{p}N_{t}}/{N_{d}^{2}}$ ratio should not be over-understood considering that the present UrQMD model is a cascade version without equation of state (EoS), i.e. there is an absence of critical end point mechanism. Furthermore, within different rapidity regions, the kinetic temperatures of different light nuclei are extracted by the Blast-wave model analysis and ratios among different light nuclei are also discussed.
We derive a simple formula relating the cross section for light cluster production (defined via a coalescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula generalises earlier coalescence-correlation rel ations found by Scheibl & Heinz and by Mrowczynski for Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and cluster yield measurements in existing and future data sets.
We discuss the possibility of extracting the neutron-neutron scattering length $a_{nn}$ and effective range $r_{nn}$ from cross section data ($d^2sigma/dM_{nn}/dOmega_pi$), as a function of the $nn$ invariant mass $M_{nn}$, for $pi^+$ photoproduction on the deuteron ($gamma dto pi^+nn$). The analysis is based on a $gamma dto pi^+nn$ reaction model in which realistic elementary amplitudes for $gamma pto pi^+n$, $NNto NN$, and $pi Nto pi N$ are built in. We show that $M_{nn}$ dependence (lineshape) of a ratio $R_{rm th}$, $d^2sigma/dM_{nn}/dOmega_pi$ normalized by $dsigma/dOmega_pi$ for $gamma ptopi^+ n$ and the nucleon momentum distribution inside the deuteron, at the kinematics with $theta_pi=0^circ$ and $E_gammasim 250$ MeV is particularly useful for extracting $a_{nn}$ and $r_{nn}$ from the corresponding data $R_{rm exp}$. It is found that $R_{rm exp}$ with 2% error, resolved into the $M_{nn}$ bin width of 0.04 MeV (corresponding to the $p_pi$ bin width of 0.05 MeV$/c$), can determine $a_{nn}$ and $r_{nn}$ with uncertainties of $pm 0.21$ fm and $pm 0.06$ fm, respectively, for the case of $a_{nn}=-18.9$ fm and $r_{nn}=2.75$ fm. The requirement of such narrow bin widths indicates that the momenta of the incident photon and the emitted $pi^+$ have to be measured with high resolutions. This can be achieved by utilizing virtual photons of very small $Q^2$ from electron scattering at Mainz MAMI facility. The proposed method for determining $a_{nn}$ and $r_{nn}$ from $gamma dto pi^+ nn$ has a great experimental advantage over the previous one utilizing $pi^- dtogamma nn$ for being free from the formidable task of controlling the neutron detection efficiency and its uncertainty.
In this work we use the IP-Glasma+MUSIC+UrQMD framework to systematically study a wide range of hadronic flow observables at 2.76 TeV. In addition to the single particle spectra and anisotropic flow coefficients $v_n$ previously studied in cite{1609. 02958}, we consider event-plane correlations, non-linear response coefficients $chi_{npq}$, and event shape engineering. Taken together, these observables provide a wealth of insight into the collective behavior of the QGP and initial state fluctuations. They shed light on flow fluctuations, flow at fixed system size but different initial geometries, as well as the non-linear hydrodynamic response to the initial state spatial eccentricities. By synthesizing this information we can gain further insight into the transport properties of the QGP as well as the fluctuation spectrum of the initial state.
149 - Jun He , B. Saghai 2010
A chiral constituent quark model approach, embodying s- and u-channel exchanges,complemented with a Reggeized treatment for t-channel is presented. A model is obtained allowing data for $pi^- p to eta n$ and $gamma p to eta p$ to be describe satisfac torily. For the latter reaction, recently released data by CLAS and CBELSA/TAPS Collaborations in the system total energy range $1.6 lesssim W lesssim 2.8$ GeV are well reproduced due to the inclusion of Reggeized trajectories instead of simple $rho$ and $omega$ poles. Contribution from missing resonances is found to be negligible in the considered processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا