ﻻ يوجد ملخص باللغة العربية
We examine a magnitude limited (M_B< -18.7) sample of post-starburst (PSB) galaxies at 0.03<z<0.11 in the different environments from the spectroscopic data set of the Padova Millennium Galaxy Group Catalog and compare their incidence and properties with those of passive (PAS) and emission line galaxies (EML). PSB galaxies have a quite precise life-time (<1-1.5 Gyr), and they hold important clues for understanding galaxy evolution. While the properties (stellar mass, absolute magnitude, color) of PSBs do not depend on environment, their frequency increases going from single galaxies to binary systems to groups, both considering the incidence with respect to the global number of galaxies and to the number of currently+recently star-forming galaxies. Including in our analysis the sample of cluster PSBs drawn from the WIde-field Nearby Galaxy-cluster Survey presented in Paccagnella et al., we extend the halo mass range covered and present a coherent picture of the effect of the environment on galaxy transformations. We find that the PSB/(PSB+EML) fraction steadily increases with halo mass going from 1% in 10^{11} M_sun$ haloes to ~15% in the most massive haloes (10^{15.5} M_sun). This provides evidence that processes specific to the densest environments, such as ram pressure stripping, are responsible for a large fraction of PSB galaxies in dense environments. These processes act on a larger fraction of galaxies than alternative processes leading to PSB galaxies in the sparsest environments, such as galaxy interactions.
We present the first results of our pilot study of 8 photometrically selected Lyman continuum (LyC) emitting galaxy candidates from the COSMOS field and focus on their optical emission line ratios. Observations were performed in the H and K bands usi
About 35 years ago a class of galaxies with unusually strong Balmer absorption lines and weak emission lines was discovered in distant galaxy clusters. These objects, alternatively referred to as post-starburst, E+A or k+a galaxies, are now known to
Post-starburst or E+A galaxies are rapidly transitioning from star-forming to quiescence. While the current star formation rate of post-starbursts is already at the level of early type galaxies, we recently discovered that many have large CO-traced m
Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with $0.01<z<0
Recent literature suggests that there are two modes through which galaxies grow their stellar mass - a normal mode characterized by quasi-steady star formation, and a highly efficient starburst mode possibly triggered by stochastic events such as gal