ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Encoding with Optical Dielectric Metasurface via Independent Multichannels

391   0   0.0 ( 0 )
 نشر من قبل Fengliang Dong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Information encryption and security is a prerequisite for information technology which can be realized by optical metasurface owing to its arbitrary manipulation over the wavelength, polarization, phase and amplitude of light. So far information encoding can be implemented by the metasurface in one dimensional (1D) mode (either wavelength or polarization) only with several combinations of independent channels. Here we successfully apply dielectric metasurfaces in a 2D mode (both wavelength and polarization) with far more combinations of independent channels to encrypt information, which therefore enhances the encryption security dramatically. Six independent channels by two circular polarization states (RCP and LCP) and three visible wavelengths (633 nm, 532 nm and 473 nm) in 2D mode can produce 63 combinations available to information encoding, in sharp contrast with 7 combinations by 3 independent channels in 1D mode. This 2D mode encoding strategy paves a novel pathway for escalating the security level of information in multichannel information encryption, anti-counterfeiting, optical data storage, and information processing.



قيم البحث

اقرأ أيضاً

78 - Yanjun Bao , Ying Yu , Shang Sun 2021
Metasurfaces are planar structures that can manipulate the amplitude, phase and polarization (APP) of light at subwavelength scale. Although various functionalities have been proposed based on metasurface, a most general optical control, i.e., indepe ndent complex-amplitude (amplitude and phase) control of arbitrary two orthogonal states of polarizations, has not yet been realized. Such level of optical control can not only cover the various functionalities realized previously, but also enable new functionalities that are not feasible before. Here, we propose a single-layer dielectric metasurface to realize this goal and experimentally demonstrate several advanced functionalities, such as two independent full-color printing images under arbitrary elliptically orthogonal polarizations and dual sets of printing-hologram integrations. Our work opens the way for a wide range of applications in advanced image display, information encoding, and polarization optics.
Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this letter, we report on a novel scheme that utilizes a metasurface optica l chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers $~10^7$ and temperatures (about 35 ${mu}$K) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress towards fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing and other areas.
All-dielectric metasurfaces consisting of arrays of nanostructured high-refractive-index materials, typically Si, are re-writing what is achievable in terms of the manipulation of light. Such devices support very strong magnetic, as well as electric, resonances, and are free of ohmic losses that severely limit the performance of their plasmonic counterparts. However, the functionality of dielectric-based metasurfaces is fixed-by-design, i.e. the optical response is fixed by the size, arrangement and index of the nanoresonators. A far wider range of applications could be addressed if active/reconfigurable control were possible. We demonstrate this here, via a new hybrid metasurface concept in which active control is achieved by embedding deeply sub-wavelength inclusions of a tuneable chalcogenide phase-change material within the body of high-index Si nanocylinders. Moreover, by strategic placement of the phase-change layer, and switching of its phase-state, we show selective and active control of metasuface resonances. This yields novel functionality, which we showcase via a dual- to mono-band meta-switch operating simultaneously in the O and C telecommunication bands.
Metasurfaces are optically thin metamaterials that promise complete control of the wavefront of light but are primarily used to control only the phase of light. Here, we present an approach, simple in concept and in practice, that uses meta-atoms wit h a varying degree of form birefringence and rotation angles to create high-efficiency dielectric metasurfaces that control both the optical amplitude and phase at one or two frequencies. This opens up applications in computer-generated holography, allowing faithful reproduction of both the phase and amplitude of a target holographic scene without the iterative algorithms required in phase-only holography. We demonstrate all-dielectric metasurface holograms with independent and complete control of the amplitude and phase at up to two optical frequencies simultaneously to generate two- and three-dimensional holographic objects. We show that phase-amplitude metasurfaces enable a few features not attainable in phase-only holography; these include creating artifact-free two-dimensional holographic images, encoding phase and amplitude profiles separately at the object plane, encoding intensity profiles at the metasurface and object planes separately, and controlling the surface textures of three-dimensional holographic objects.
The recent observation of high-harmonic generation from solids creates a new possibility for engineering fundamental strong-field processes by patterning the solid target with subwavelength nanostructures. All-dielectric metasurfaces exhibit high dam age thresholds and strong enhancement of the driving field, making them attractive platforms to control high-harmonics and other high-field processes at nanoscales. Here we report enhanced non-perturbative high-harmonic emission from a Si metasurface that possesses a sharp Fano resonance resulting from a classical analogue of electromagnetically induced transparency. Harmonic emission is enhanced by more than two orders of magnitude compared to unpatterned samples. The enhanced high harmonics are highly anisotropic with excitation polarization and are selective to excitation wavelength due to its resonant feature. By combining nanofabrication technology and ultrafast strong-field physics, our work paves the way for designing new compact ultrafast photonic devices that operate under high intensities and short wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا