ﻻ يوجد ملخص باللغة العربية
We study various properties of the vibrational normal modes for Coulomb-interacting particles in two-dimensional irregular confinement using numerical simulations. By analyzing the participation ratio and spectral statistics, we characterize the vibrational modes for Coulomb clusters as localized, quasi-localized and delocalized. We also study a novel correlation function to understand the spatial structure of these different kinds of modes and subsequently extract the associated characteristic length scales. We further demonstrate that, at any given temperature, particles exhibiting larger displacement over a time interval comparable to the structural relaxation time, are strongly correlated with the low-frequency quasi-localized modes of the inherent structure corresponding to the initial configuration. Establishing this correlation for Coulomb clusters paves the path to identify the particular feature of the initial configuration that determines the previously observed heterogeneous dynamics of the particles at low temperatures in these systems.
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional traps across the thermal crossover from an amorphous solid- to liquid-like behaviors. While static correlations, that investigate
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran
Using molecular dynamics simulations we investigate the dependence of the structural and vibrational properties of the surfaces of sodo-silicate glasses on the sodium content as well as the nature of the surface. Two types of glass surfaces are consi
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding
Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular m