ﻻ يوجد ملخص باللغة العربية
Kaon flavour physics has played in the 1960s and 1970s a very important role in the construction of the Standard Model (SM) and in the 1980s and 1990s in SM tests with the help of CP violation in $K_Ltopipi$ decays represented by $varepsilon_K$ and the ratio $varepsilon/varepsilon$. In this millennium this role has been taken over by $B_{s,d}$ and $D$ mesons. However there is no doubt that in the coming years we will witness the return of kaon flavour physics with the highlights being the measurements of the theoretically clean branching ratios for the rare decays $K^+rightarrow pi^+ ubar u$ and $K_{L}rightarrowpi^0 ubar u$ and the improved SM predictions for the ratio $varepsilon/varepsilon$, for $varepsilon_K$ and the $K^0-bar K^0$ mixing mass difference $Delta M_K$. Theoretical progress on the decays $K_{L,S}tomu^+mu^-$ and $K_Ltopi^0ell^+ell^-$ is also expected. They all are very sensitive to new physics (NP) contributions and the correlations between them should help us to identify new dynamics at very short distance scales. These studies will be enriched when theory on the $Ktopipi$ isospin amplitudes ${rm Re} A_0$ and ${rm Re} A_2$ improves. This talk summarizes several aspects of this exciting field. In particular we emphasize the role of the Dual QCD approach in getting the insight into the numerical Lattice QCD results on $K^0-bar K^0$ mixing and $Ktopipi$ decays.
In this short presentation I emphasize the increased importance of kaon flavour physics in the search for new physics (NP) that we should witness in the rest of this decade and in the next decade. The main actors will be the branching ratios for the
We investigate the effects of the kaon cloud on the electromagnetic and axial-vector form factors of the $Omega^-$ baryon within the framework of the chiral quark-soliton model. We first derive the profile function of the chiral soliton in such a way
We present the Flavour Les Houches Accord (FLHA) which specifies a unique set of conventions for flavour-related parameters and observables. The FLHA uses the generic SUSY Les Houches Accord (SLHA) file structure. It defines the relevant Standard Mod
We give a brief introduction to flavour physics. The first part covers the flavour structure of the Standard Model, how the Kobayashi-Maskawa mechanism is tested and provides examples of searches for new physics using flavour observables, such as mes
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m