ترغب بنشر مسار تعليمي؟ اضغط هنا

PT-symmetric photonic quantum systems with gain and loss do not exist

93   0   0.0 ( 0 )
 نشر من قبل Alexander Szameit
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the impact of gain and loss on the evolution of photonic quantum states and find that PT-symmetric quantum optics in gain/loss systems is not possible. Within the framework of macroscopic quantum electrodynamics we show that gain and loss are associated with non-compact and compact operator transformations, respectively. This implies a fundamentally different way in which quantum correlations between a quantum system and a reservoir are built up and destroyed.

قيم البحث

اقرأ أيضاً

We investigate vortex excitations in dilute Bose-Einstein condensates in the presence of complex $mathcal{PT}$-symmetric potentials. These complex potentials are used to describe a balanced gain and loss of particles and allow for an easier calculati on of stationary states in open systems than in a full dynamical calculation including the whole environment. We examine the conditions under which stationary vortex states can exist and consider transitions from vortex to non-vortex states. In addition, we study the influences of $mathcal{PT}$ symmetry on the dynamics of non-stationary vortex states placed at off-center positions.
Since the first derivation of non-Markovian stochastic Schrodinger equations, their interpretation has been contentious. In a recent Letter [Phys. Rev. Lett. 100, 080401 (2008)], Diosi claimed to prove that they generate true single system trajectori es [conditioned on] continuous measurement. In this Letter we show that his proof is fundamentally flawed: the solution to his non-Markovian stochastic Schrodinger equation at any particular time can be interpreted as a conditioned state, but joining up these solutions as a trajectory creates a fiction.
We consider different properties of small open quantum systems coupled to an environment and described by a non-Hermitian Hamilton operator. Of special interest is the non-analytical behavior of the eigenvalues in the vicinity of singular points, the so-called exceptional points (EPs), at which the eigenvalues of two states coalesce and the corresponding eigenfunctions are linearly dependent from one another. The phases of the eigenfunctions are not rigid in approaching an EP and providing therewith the possibility to put information from the environment into the system. All characteristic properties of non-Hermitian quantum systems hold true not only for natural open quantum systems that suffer loss due to their embedding into the continuum of scattering wavefunctions. They appear also in systems coupled to different layers some of which provide gain to the system. Thereby gain and loss, respectively, may be fixed inside every layer, i.e. characteristic of it.
PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to suppor t ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT-symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the non-uniform particle density and leave or enter the condensate through its borders creating the required net current.
Families of coupled solitons of $mathcal{PT}$-symmetric physical models with gain and loss in fractional dimension and in settings with and without cross-interactions modulation (CIM), are reported. Profiles, powers, stability areas, and propagation dynamics of the obtained $mathcal{PT}$-symmetric coupled solitons are investigated. By comparing the results of the models with and without CIM, we find that the stability area of the model with CIM is much broader than the one without CIM. Remarkably, oscillating $mathcal{PT}$-symmetric coupled solitons can also exist in the model of CIM with the same coefficients of the self- and cross-interactions modulations. In addition, the period of these oscillating coupled solitons can be controlled by the linear coupling coefficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا