ﻻ يوجد ملخص باللغة العربية
Stochastic neural networks are a prototypical computational device able to build a probabilistic representation of an ensemble of external stimuli. Building on the relationship between inference and learning, we derive a synaptic plasticity rule that relies only on delayed activity correlations, and that shows a number of remarkable features. Our delayed-correlations matching (DCM) rule satisfies some basic requirements for biological feasibility: finite and noisy afferent signals, Dales principle and asymmetry of synaptic connections, locality of the weight update computations. Nevertheless, the DCM rule is capable of storing a large, extensive number of patterns as attractors in a stochastic recurrent neural network, under general scenarios without requiring any modification: it can deal with correlated patterns, a broad range of architectures (with or without hidden neuronal states), one-shot learning with the palimpsest property, all the while avoiding the proliferation of spurious attractors. When hidden units are present, our learning rule can be employed to construct Boltzmann machine-like generative models, exploiting the addition of hidden neurons in feature extraction and classification tasks.
We show that discrete synaptic weights can be efficiently used for learning in large scale neural systems, and lead to unanticipated computational performance. We focus on the representative case of learning random patterns with binary synapses in si
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stab
We introduce a model of generalized Hebbian learning and retrieval in oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. Recent experiments have shown that synaptic plasticity depends on spike timing, especi
We study a network of spiking neurons with heterogeneous excitabilities connected via inhibitory delayed pulses. For globally coupled systems the increase of the inhibitory coupling reduces the number of firing neurons by following a Winner Takes All
We study the dynamics of networks with inhibitory and excitatory leaky-integrate-and-fire neurons with short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is analyzed by a Heterogeneous Mean-Field ap