ﻻ يوجد ملخص باللغة العربية
The wealth of properties of titanium dioxide relies on its various polymorphs and on their mixtures coupled with a sensitivity to crystallographic orientations. It is therefore pivotal to set out methods that allow surface structural identification. We demonstrate herein the ability of photoemission spectroscopy to provide Ti LMV (V = valence) Auger templates to quantitatively analyze TiO$_2$ polymorphs. The Ti LMV decay reflects Ti 4sp-O 2p hybridizations that are intrinsic properties of TiO$_2$ phases and orientations. Ti LMV templates collected on rutile (110), anatase (101), and (100) single crystals allow for the quantitative analysis of mixed nanosized powders, which bridges the gap between surfaces of reference and complex materials. As a test bed, the anatase/rutile P25 is studied both as received and during the anatase-to-rutile transformation upon annealing. The agreement with X-ray diffraction measurements proves the reliability of the Auger analysis and highlights its ability to detect surface orientations.
This study reports on the properties of nitrogen doped titanium dioxide $TiO_2$ thin films considering the application as transparent conducting oxide (TCO). Sets of thin films were prepared by sputtering a titanium target under oxygen atmosphere on
It is shown that in nanoporous titanium dioxide films, sensitivity to atmospheric hydrogen exposure and electroforming can coexist and are interdependent. The devices work as conventional hydrogen sensors below a threshold electric field while above
Despite great technological importance and many investigations, a material with measured hardness comparable to that of diamond or cubic boron nitride has yet to be identified. Combined theoretical and experimental investigations led to the discovery
In this work, we have developed economic process to elaborate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers was prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofl
Based on first-principles calculations, we predict that the magnetic anisotropy energy (MAE) of Co-doped TiO$_2$ sensitively depends on carrier accumulation. This magnetoelectric phenomenon provides a promising route to directly manipulate the magnet