ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous Bitwidth Binarization in Convolutional Neural Networks

64   0   0.0 ( 0 )
 نشر من قبل Josh Fromm
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has shown that fast, compact low-bitwidth neural networks can be surprisingly accurate. These networks use homogeneous binarization: all parameters in each layer or (more commonly) the whole model have the same low bitwidth (e.g., 2 bits). However, modern hardware allows efficient designs where each arithmetic instruction can have a custom bitwidth, motivating heterogeneous binarization, where every parameter in the network may have a different bitwidth. In this paper, we show that it is feasible and useful to select bitwidths at the parameter granularity during training. For instance a heterogeneously quantized version of modern networks such as AlexNet and MobileNet, with the right mix of 1-, 2- and 3-bit parameters that average to just 1.4 bits can equal the accuracy of homogeneous 2-b



قيم البحث

اقرأ أيضاً

88 - Zhe Xu , Ray C. C. Cheung 2019
Although convolutional neural networks (CNNs) are now widely used in various computer vision applications, its huge resource demanding on parameter storage and computation makes the deployment on mobile and embedded devices difficult. Recently, binar y convolutional neural networks are explored to help alleviate this issue by quantizing both weights and activations with only 1 single bit. However, there may exist a noticeable accuracy degradation when compared with full-precision models. In this paper, we propose an improved training approach towards compact binary CNNs with higher accuracy. Trainable scaling factors for both weights and activations are introduced to increase the value range. These scaling factors will be trained jointly with other parameters via backpropagation. Besides, a specific training algorithm is developed including tight approximation for derivative of discontinuous binarization function and $L_2$ regularization acting on weight scaling factors. With these improvements, the binary CNN achieves 92.3% accuracy on CIFAR-10 with VGG-Small network. On ImageNet, our method also obtains 46.1% top-1 accuracy with AlexNet and 54.2% with Resnet-18 surpassing previous works.
Convolutional neural networks (CNN) have recently achieved state-of-the-art results in various applications. In the case of image recognition, an ideal model has to learn independently of the training data, both local dependencies between the three c omponents (R,G,B) of a pixel, and the global relations describing edges or shapes, making it efficient with small or heterogeneous datasets. Quaternion-valued convolutional neural networks (QCNN) solved this problematic by introducing multidimensional algebra to CNN. This paper proposes to explore the fundamental reason of the success of QCNN over CNN, by investigating the impact of the Hamilton product on a color image reconstruction task performed from a gray-scale only training. By learning independently both internal and external relations and with less parameters than real valued convolutional encoder-decoder (CAE), quaternion convolutional encoder-decoders (QCAE) perfectly reconstructed unseen color images while CAE produced worst and gray-sca
Recently, deep learning has become a de facto standard in machine learning with convolutional neural networks (CNNs) demonstrating spectacular success on a wide variety of tasks. However, CNNs are typically very demanding computationally at inference time. One of the ways to alleviate this burden on certain hardware platforms is quantization relying on the use of low-precision arithmetic representation for the weights and the activations. Another popular method is the pruning of the number of filters in each layer. While mainstream deep learning methods train the neural networks weights while keeping the network architecture fixed, the emerging neural architecture search (NAS) techniques make the latter also amenable to training. In this paper, we formulate optimal arithmetic bit length allocation and neural network pruning as a NAS problem, searching for the configurations satisfying a computational complexity budget while maximizing the accuracy. We use a differentiable search method based on the continuous relaxation of the search space proposed by Liu et al. (arXiv:1806.09055). We show, by grid search, that heterogeneous quantized networks suffer from a high variance which renders the benefit of the search questionable. For pruning, improvement over homogeneous cases is possible, but it is still challenging to find those configurations with the proposed method. The code is publicly available at https://github.com/yochaiz/Slimmable and https://github.com/yochaiz/darts-UNIQ
64 - Yun Liu , Guolei Sun , Yu Qiu 2021
We tackle the low-efficiency flaw of vision transformer caused by the high computational/space complexity in Multi-Head Self-Attention (MHSA). To this end, we propose the Hierarchical MHSA (H-MHSA), whose representation is computed in a hierarchical manner. Specifically, our H-MHSA first learns feature relationships within small grids by viewing image patches as tokens. Then, small grids are merged into larger ones, within which feature relationship is learned by viewing each small grid at the preceding step as a token. This process is iterated to gradually reduce the number of tokens. The H-MHSA module is readily pluggable into any CNN architectures and amenable to training via backpropagation. We call this new backbone TransCNN, and it essentially inherits the advantages of both transformer and CNN. Experiments demonstrate that TransCNN achieves state-of-the-art accuracy for image recognition. Code and pretrained models are available at https://github.com/yun-liu/TransCNN. This technical report will keep updating by adding more experiments.
Deep convolutional neural networks are hindered by training instability and feature redundancy towards further performance improvement. A promising solution is to impose orthogonality on convolutional filters. We develop an efficient approach to im pose filter orthogonality on a convolutional layer based on the doubly block-Toeplitz matrix representation of the convolutional kernel instead of using the common kernel orthogonality approach, which we show is only necessary but not sufficient for ensuring orthogonal convolutions. Our proposed orthogonal convolution requires no additional parameters and little computational overhead. This method consistently outperforms the kernel orthogonality alternative on a wide range of tasks such as image classification and inpainting under supervised, semi-supervised and unsupervised settings. Further, it learns more diverse and expressive features with better training stability, robustness, and generalization. Our code is publicly available at https://github.com/samaonline/Orthogonal-Convolutional-Neural-Networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا